今天给各位分享峰谷发电船的知识,其中也会对山峰水电站进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录:
海浪可以发电吗?
在靠近港湾的近海,为了使船只安全进出港,总要设置很多航标灯为夜航船指引航向。以前的航标灯一般靠专人专船去安装或更换电池,非常麻烦,费用也很大。
1940年,英国工程师缪特尔发明了一种波浪发电机,利用海浪上下运动的力量驱动空气涡轮机发电,使航标灯点亮。它的原理并不复杂:当海浪上下波动时,浮体也上下运动,空气室中的空气不断受到压缩和扩张,如同风箱一样。受压缩的空气从露出海面的喷口处以极快的速度喷出,冲向涡轮机,使它快速旋转,这样就带动发电机发电了。
从此以后,绝大多数的航标灯都采用了这种装置。再也不用派人去为航标灯点亮了。
缪特尔工程师是一个善于思考的聪明人。他的别墅建在山上,经常停水,他便在别墅的房顶上设置了一个水池。他把一个家用的活塞式抽水机用连杆与别墅的大门连接在一起。每一个人推门进屋都可以给屋顶上的水池压上20千克的水。客人们到别墅来都抱怨缪特尔家的大门太重了,开门特别费劲,建议他修理一下。缪特尔总是笑着说:“不用修。这大门是我家水池抽水机的能源。你一推门,我用水就不犯愁了!”客人们了解内情后,都夸缪特尔会动脑筋。正是这种善于想窍门动脑筋的性格使缪特尔成为一个拥有多项专利的发明家。
缪特尔还是一个做事非常执著的人。他认准了的事,千方百计也要做成功。
鸡蛋能不能在光滑的桌面上立住。这是一个古老的问题。
人们都认为这是不可能的,但后来却找到了两种解决的办法。
一种是大家熟知的哥伦布解法。他把鸡蛋往桌子上一磕,蛋壳碎了,但是鸡蛋立住了。谁也没像哥伦布这么做过、想过,哥伦布做了,并体现了一种超常的创新探索精神。这正是发现“新大陆”所需要的精神。
另一种是比较科学的巧妙做法。将鸡蛋一旋,鸡蛋在旋转中也立住了。
此后的几百年间,人们只把这个问题当做“脑筋急转弯”的题来考孩子们。但还有一些人仍然不屈不挠地把它当作一个科学命题来研究。即:如果不把鸡蛋磕碎,也不旋转鸡蛋,鸡蛋能不能立住呢。
缪特尔就是这些“钻牛角尖”的人中的一个。他把鸡蛋放到显微镜下观察,发现蛋壳表面是个起伏不平的粗糙面:高处的平均高度是0.2毫米,高点的平均间距是0.8毫米。在铅笔芯那样大的面积内,至少有3个以上的高点。从物理学的原理讲,只要鸡蛋的重心垂线通过这3个点的中间,鸡蛋从理论上讲就可以立起来。缪特尔反复进行了无数次的实验,真的把鸡蛋完好无损地静止地立起来了。
缪特尔就是这么一个极富智慧又具有认真分析观察态度的科学家。
有一次,缪特尔从英国乘海轮到法国去。傍晚时分,他看到航标工们驾着小船去给航标灯更换电池。他想,海浪一起一伏的动力,为什么不利用来发电,解决航标灯的电源呢。从此,他与海浪结下了不解之缘,常常一个人坐在海边观察海浪,思索如何将上下运动的波能转变成高速旋转运动的机械能,从而带动发电机发出电力。有一天傍晚,他在海边呆久了,直到下起了小雨,他才匆匆往回赶。路途中,雨越下越大,缪特尔躲进一家铁匠铺避雨。看着铁匠太太的手一进一出地扯动风箱,他不禁心中一动。他冒雨冲回家中,连夜在地下室里干了起来。经过3天的奋战,缪特尔造出了像风箱一样的空气活塞式波浪发电装置。
这个发电装置有一个直径60厘米、长4米的圆筒,上面设有两个活塞室,垂直沉下海去,部分浮出水面,活像一个浮标。当海浪上下波动时,活塞室中的空气不断受到压缩和扩张,如同风箱一样。受压缩的空气从露出海面的喷口中以极快的速度喷出,冲向涡轮机叶片,使它快速旋转,从而带动浮筒上面的发电机发电。缪特尔将发电装置送到海里试验,一会儿,浮筒上的灯果然亮了起来。缪特尔高兴极了,他又对发电装置做了一些改善,使发电性能更好。一个发电装置可以发100千瓦的电,完全够航标灯使用。
海洋波浪是由海上的风引起的海面上的水的运动。波浪的大小取决于风,风大浪就高,风小浪就低。在一个典型的海洋中部,8秒的周期里就能涌起15米高的波浪,而大风暴掀起的海浪可高达10米以上。奔腾起伏的海浪,蕴藏着巨大的能量。据科学家测试,海浪对海岸的冲击力每平方米可达20~30吨,大的海浪甚至达到60吨。它像一个力大无穷的壮士,能将10多吨重的岩石抛到20~30米的高处,能把上千吨的混凝土防波堤连基冲垮,甚至还能把万吨巨轮掀到岸上去。在1平方公里的海面上,一起一伏的海浪蕴藏着20万千瓦的能量,全世界的波浪能总蕴藏量为109千瓦,是一笔巨大而取之不尽、用之不竭的能源。
波浪除了上下运动的能量外,还有横向运动的能量和旋转运动的能量。缪特尔的成功,激发了人们向海浪要能量的热情,目前,世界上许多国家已经就不同方向运动的能量设计了不同的装置进行试验。
最常见的就是缪特尔发明的空气活塞式波力发电机。单个的这种发电机发电能力有限,现在科学家建造了装有许多个装置的波力发电船。这种船长80米,宽12米,重500吨,装有20个浮筒,在3米高海浪的水面上,能发电2000千瓦左右。
现在还研制出了一种固定式海岸波力发电装置。它把空气活塞室固定在海岸边,通过管道内水面的升降来代替浮筒的上下,使活塞室内的空气反复受到压缩和扩张,从而将横向运动的波能转化为机械能,带动发电机发电,每一个海岸固定式发电机容量为1000千瓦。
美、英、法、日等国在20世纪90年代还研制出一种更为经济的发电装置——气袋式波力发电机。科学家们将一个个特制软质气袋浮漂在海面上,再用链状轴将它们串连成排,如同一条横跨海面的粗大胶管。海浪扑打气袋,气袋里的空气受到压缩。被压缩的空气驱动空气涡轮机,再带动发电机发出电来。一套由4000个气袋组成的波力发电装置,可以发电2000万千瓦。
最近,日本又开发出一种叫“人造环礁”的波力发电装置,直径达75米,好像一个巨大的油煎环饼,只有顶部露出水面。海浪冲击环礁边沿,并从中央喷口喷出,冲击中间的涡轮机工作,发出电来。一个装置的发电量为10万千瓦。
自20世纪初期以来,人类就锲而不舍地探求发掘波浪能的方法。到20世纪末,科学家们已卓有成效地研制出各种各样的波力发电装置。英国、美国、法国、日本、意大利等国已经开始利用波能发电,节省了大量能源。中国也在积极研制波力发电装置,并已投入试验。对于中国这样一个有漫长海岸线的国家而言,光是大陆沿海就至少有12亿千瓦的海浪能量等待我们去开发利用。
科学家们预计,21世纪初,波力发电装置进一步改善以后,将大量投入使用。到21世纪中叶,波浪将与石油、煤、风、潮汐等能源一样为人类服务。它不仅能让航标灯发光,而且能将光明送到地球的多个角落,照亮人类的生活。
新能源船舶以什么为动力
1. 风能在船舶上的应用进展
人类社会对于风帆助航的理解和认识有着悠久的历史,工业科技水平的不断提升对于风帆技术的应用起到了巨大的推动作用,根据风帆的形式及其对风力利用性质的不同,衍生出了普通翼帆、特种翼帆(包括单转子–翼帆组合体帆、转柱帆、转带帆、Walker型风帆)、三角帆、天帆、Magnus效应帆(涡轮帆、转筒帆)和仿生帆等众多船舶风帆结构。其中以三角帆和普通翼帆技术应用水平较高,其他帆型形式在船舶上的应用多是带有试验性质的技术探索 [8] 。
2.2. 太阳能在船舶上的应用进展
将太阳能光伏发电应用于船舶是目前绿色船舶发展的一个重要方向。1997年,瑞士在日内瓦湖上从洛桑到圣叙尔皮斯区投入使用了两艘太阳能驱动客运船。另一艘为长27.5 m的、沙锥号由一个1.8 kW的光伏阵列驱动,能量存储用的是一个180 V、72 Ah的蓄电池,可有效承载60名乘客。2007年11月由我国沈阳泰克太阳能应用有限公司研制了“001”号太阳能旅游船,船体长6.2 m、宽1.9 m、可载9人,时速约10 km左右。船体的设计可分为单浮筒、双浮筒和三浮筒三种型号。这种太阳能旅游船在大于4级风的条件下可持续航行6 h。这是国内建造的第一艘太阳能旅游船 [9] 。2008年8月26日,日本邮船株式会社与新日本石油公司合作耗资1.5亿日元在旗下一艘船长200 m,排水量达60213 t的滚装船御夫座领袖(Aurig a Leader)号上安装了太阳能光伏系统。电池阵列328块太阳光板组成,电能输出功率可达40 kW,能满足6.9%的照明需求或0.2%~0.3%的动力需求 [10] 。2010年2月10日,亚洲最大的全太阳能船在台湾高雄下水并投入正式营运,船长13 m,采用双体船型,并搭配目前台湾厂商所能提供之最大电池54 kW/h 锂蓄电池组,两台20 kW电动机,航速最高可达9 kn,以3 kn航速至少可行驶9 h。
2.3. 生物质能在船舶上的应用进展
2008年6月27日,使用生物质能的新西兰、环球竞赛号(Earthrace)高速环保机动船完成环球航程。该船装备两台康明斯∃水星QSC型8.3L、397 kW全电控船用发动机,虽然此型号柴油机可以使用B20混合生物柴油(由20%生物柴油和80%普通柴油混合而成),但是在整个航程中燃用B100混合生物柴油(100%生物柴油)。2010年AVIVA与香港大学合作推出香港第一艘环保船,该船采用B5混合生物柴油(5%生物柴油、95%超低硫柴油)作为燃料,燃烧后的污染物较一般超低硫柴油可减少10%黑烟、5%一氧化碳及10%的碳氢化物。2010年3月马士基与英国劳氏船级社开展为期两年的船用发动机生物柴油燃料试验。试验船舶为马士基旗下Maersk Kalmar号集装箱船。在试验初期,燃料中将使用5%~7%的生物柴油混合,然后比例逐步增加,测试第一代生物燃料在船舶上应用的可行性。2010年4月美国海军与美国农业部签署一项备忘录,合作开发生物燃料和其他可再生能源,将大规模使用生物燃料作为石油的替代能源 [11] 。
2.4. 核能在船舶上的应用进展
发展民用核动力对我国船舶行业而言是一个崭新的课题。纵观世界船舶发展历史,已经有若干国家在此方面迈出了第一步,美国的“萨娃娜”号于1962年建成,在其商务部海运局的支持下进行商业运营。该船于1964年5月开始进行国际航海,停靠了欧洲14个国家的16个港口。到1965年8月,在达到对核动力民用商船的建造目的后, 改为货船投入航行,并得到政府的运营补贴,在欧洲航线航行,最后于1970年宣布退役。德国矿石运输船“奥托汉”号于1968年月12月建成。1969年3月到11月在围绕英国一周以及在南太平洋(赤道附近)、北极海、西太平洋(西印度群岛)进行了实验航海。从1970年2月开始投入商业航海,总共航行了约105万n mile。日本“陆奥”号在1974年8月28日开始的功率提升试验过程中发生了放射性泄漏事故。其后对反应堆屏蔽进行改造及安全总检查,并改变了用途,作为核动力实验船重新进行了功率提升试验。1991年在北太平洋海面上进行了4次航海试验,1995年完成退役工程。俄罗斯共建成了9艘核动力破冰船,目前正在服役的有8艘,计划建造的破冰船有2艘,即超级号破冰船(Super Icebreaker,破冰能力在3. 5 m以上)和佩贝克(Pevek)号破冰船 [3] 。
2.5. 海洋能在船舶上的应用进展
地球表面的71%都是海洋,孕育着巨大的可再生能源,如何有效地对其开发利用,已成为当前的研究热点。2004年,英国MCT有限公司制造了第一台利用海洋中的海流能进行发电的水下风车。从此,水下风车逐步成为大规模利用海流能的有效途径之一。水下风车适合于在海洋中建立小型电场,如何跟船舶结合还需大量应用基础研究。浙江大学提出了便携式船用发电机的设计思想,从船用便携式发电机的发电效率、海流能的利用率、叶片的受力分析及便携性等方面进行了详细的分析和设计,该研究为海流能利用装置的小型化及民用化提供了理论依据。随着这些成果的研究和进一步开发,有望在灯船、航标船、趸船及某些渔船和小型船舶上得到推广应用 [12] [13] 。
波浪能发电的历史
1799年,法国的吉拉德父子,获得了利用波浪能的首项专利。1910年,法国的波契克斯·普莱西克,建造了一套气动式波浪能发电装置,供应他自己住宅1 kW的电力。1965年,日本的益田善雄发明了导航灯浮标用气轮机波浪能发电装置,获得推广,成为首次商品化的波浪能发电装置。受1973年石油危机的刺激,从20世纪70年代中期起,英国、日本、挪威等波浪能资源丰富的国家,把波浪能发电作为解决未来能源的重要一环,大力研究开发。在英国,索尔特发明了点头鸭装置,科克里尔发明了波面筏装置,国家工程试验室发明了振荡水柱装置,考文垂理工学院发明了海蚌装置。1978年,日本建造了一艘长80 m、宽12 m、高5.5 m称为“海明号”的波浪能发电船。该船有22个底部敞开的气室,每两个气室可装设一台额定功率为125 kW的气轮机发电机组。1978~1986年,日本、美国、英国、加拿大、爱尔兰五国合作,先后三次在日本海由良海域对“海明号”进行了波浪能发电史上最大规模的实海原型试验。但因发电成本高,未获商业实用。1985年,英国、中国各自研制成功采用对称翼气轮机的新一代导航灯浮标用的波浪能发电装置,挪威在卑尔根附近的奥依加登岛建成了一座装机容量为250 kW的收缩斜坡聚焦波道式波浪能发电站和一座装机容量为500 kW的振荡水柱气动式波浪能发电站,标志着波浪能发电站实用化的开始。
关于峰谷发电船和山峰水电站的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。