首页 开发编程 正文

php怎么处理事件

看到这个问题必须来怒答一波~用python爬虫爬便宜机票了解一下?该爬虫对特定目的地运行并执行带有浮动日期(首选日期前后最多三天)的航班价格搜索,它会将结果保存为excel文件并发送一封包含快速统计信息的电子邮件。所以它会搜索首选日期前后最多三天的航班信息,但谷歌就是从拉里·佩奇用Java和Python构建的网络爬虫开始的,整个互联网...

php怎么处理事件,用爬虫技术能做到哪些有趣的事情?

看到这个问题必须来怒答一波~用python爬虫爬便宜机票了解一下?

喜欢旅行又怕吃土?让Python来爬取最便宜机票吧!

图源:

videoblocks.com

你喜欢旅行吗?

这个问题通常会得到一个肯定的答案,随后引出一两个有关之前冒险经历的故事。大多数人都认为旅行是体验新文化和开阔视野的好方法。但如果问题是“你喜欢搜索机票的过程吗?”也许话题就到此为止了……

可事实上,便宜的机票往往也很重要!本文将尝试构建一个网络爬虫,该爬虫对特定目的地运行并执行带有浮动日期(首选日期前后最多三天)的航班价格搜索。它会将结果保存为excel文件并发送一封包含快速统计信息的电子邮件。显然,这个爬虫的目的就是帮助我们找到最优惠的价格!

你可以在服务器上运行脚本(一个简单的Raspberry Pi就可以),每天运行一到两次。结果会以邮件形式发送,建议将excel文件存入Dropbox文件夹,以便随时随地查看。

因为爬虫以“浮动日期”进行搜索,所以它会搜索首选日期前后最多三天的航班信息。尽管该脚本一次仅运行一对目的地,但可以很容易地改写该爬虫使其每个循环运行多个目的地。最终甚至可能找到一些错误票价...那会很有意思!

另一个爬虫

某种意义上来讲,网络爬取是互联网“工作”的核心。

也许你认为这是一个十分大胆的说法,但谷歌就是从拉里·佩奇用Java和Python构建的网络爬虫开始的。爬虫不断地爬取信息,整个互联网都在试图为所有问题提供最佳的可能答案。网络爬取有不计其数的应用程序,即使更喜欢数据科学中的其他分支,你仍需要一些爬取技巧以获得数据。

这里用到的一些技术来自于最近新的一本佳作《Python网络数据采集》,书中包含与网络爬取相关的所有内容,并提供了大量简例和实例。甚至有一个特别有意思的章节,讲述如何解决验证码检验的问题。

Python的拯救

第一个挑战就是选择爬取信息的平台,本文选择了客涯(Kayak)。我们试过了Momondo, 天巡(Skyscanner), 亿客行(Expedia)和其它一些网站,但是这些网站上的验证码特别变态。

在那些“你是人类吗?”的验证中,尝试了多次选择交通灯、十字路口和自行车后,客涯似乎是最好的选择,尽管短时间内加载太多页面它会跳出安全检查。

我们设法让机器人每4到6个小时查询一次网站,结果一切正常。虽然说不定哪个部分偶尔会出点小问题,但是如果收到验证码,既可以手动解决问题后启动机器人,也可以等待几小时后的自动重启。

如果你是网络爬取新手,或者不知道为何有些网站花费很大力气阻止网络爬取,那么为构建爬虫写下第一行代码前,你一定要多加努力。

谷歌的“网络爬取规范”:

http://lmgtfy.com/?q=web+scraping+etiquette

系紧安全带...

导入并打开Chrome浏览器标签页后,会定义一些循环中会用到的函数。这个架构的构思大概是这样的:

· 一个函数用于启动机器人程序,表明想要搜索的城市和日期。

· 这个函数获得首轮搜索结果,按“最佳”航班排序,然后点击“加载更多结果”。

· 另一个函数会爬取整个页面,并返回一个dataframe数据表。

· 随后重复步骤2和步骤3,得出按“价格”和“航行时间”排序的结果。

· 发送一封简要总结价格(最低价和平均价)的邮件,并将带有这三种排序类型的dataframe数据表保存为一份excel文件。

· 以上所有步骤会在循环中重复,每X小时运行一次。

每个Selenium项目都以一个网页驱动器开始。我们使用Chromedriver驱动器,但还有其它选择。PhantomJS和Firefox也很受欢迎。下载Chromedriver后,将其置于一个文件夹中即可。第一行代码会打开一个空白Chrome标签页。

from time import sleep, strftime

from random import randint

import pandas as pd

from selenium import webdriver

from selenium.webdriver.common.keys import Keys

import smtplib

from email.mime.multipart import MIMEMultipart

# Change this to your own chromedriver path!

chromedriver_path = 'C:/{YOUR PATH HERE}/chromedriver_win32/chromedriver.exe'

driver = webdriver.Chrome(executable_path=chromedriver_path) # This will open the Chrome window

sleep(2)

这些是将用于整个项目的包。使用randint函数令机器人在每次搜索之间随机睡眠几秒钟。这对任何一个机器人来说都是必要属性。如果运行前面的代码,应该打开一个Chrome浏览器窗口,机器人会在其中导航。

一起来做一个快速测试:在另一个窗口上访问客涯网(http://kayak.com),选择往返城市和日期。选择日期时,确保选择的是“+-3天”。由于在编写代码时考虑到了结果页面,所以如果只想搜索特定日期,很可能需要做一些微小的调整。

点击搜索按钮在地址栏获取链接。它应该类似于下面所使用的链接,将变量kayak定义为url,并从网页驱动器执行get方法,搜索结果就会出现。

无论何时,只要在几分钟内使用get命令超过两到三次,就会出现验证码。实际上可以自己解决验证码,并在下一次验证出现时继续进行想要的测试。从测试来看,第一次搜索似乎一直没有问题,所以如果想运行这份代码,并让它在较长的时间间隔后运行,必须解决这个难题。你并不需要十分钟就更新一次这些价格,对吧?

每个XPath都有陷阱

到目前为止,已经打开了一个窗口,获取了一个网站。为了开始获取价格和其他信息,需要使用XPath或CSS选择器,我们选择了XPath。使用XPath导航网页可能会令人感到困惑,即使使用从inspector视图中直接使用“复制XPath”,但这不是获得所需元素的最佳方法。有时通过“复制XPath”这个方法获得的链接过于针对特定对象,以至于很快就失效了。《Python网络数据采集》一书很好地解释了使用XPath和CSS选择器导航的基础知识。

接下来,用Python选择最便宜的结果。上面代码中的红色文本是XPath选择器,在网页上任意一处右键单击选择“inspect”就可以看到它。在想要查看代码的位置,可以再次右键单击选择“inspect”。

为说明之前所观察到的从“inspector”复制路径的缺陷,请参考以下差异:

1 # This is what the copymethod would return. Right click highlighted rows on the right side and select “copy> Copy XPath”//*[@id=“wtKI-price_aTab”]/div[1]/div/div/div[1]/div/span/span

2 # This is what I used todefine the “Cheapest” buttoncheap_results= ‘//a[@data-code = “price”]’

第二种方法的简洁性清晰可见。它搜索具有data-code等于price属性的元素a。第一种方法查找id等于wtKI-price_aTab的元素,并遵循第一个div元素和另外四个div和两个span。这次……会成功的。现在就可以告诉你,id元素会在下次加载页面时更改。每次页面一加载,字母wtKI会动态改变,所以只要页面重新加载,代码就会失效。花些时间阅读XPath,保证你会有收获。

不过,使用复制的方法在不那么“复杂”的网站上工作,也是很好的!

基于以上所展示的内容,如果想在一个列表中以几个字符串的形式获得所有搜索结果该怎么办呢?其实很简单。每个结果都在一个对象中,这个对象的类是“resultWrapper”。获取所有结果可以通过像下面这样的for循环语句来实现。如果你能理解这一部分,应该可以理解接下来的大部分代码。它基本上指向想要的结果(结果包装器),使用某种方式(XPath)获得文本,并将其放置在可读对象中(首先使用flight_containers,然后使用flight_list)。

前三行已展示在图中,并且可以清楚地看到所需的内容,但是有获得信息的更优选择,需要逐一爬取每个元素。

准备起飞吧!

最容易编写的函数就是加载更多结果的函数,所以代码由此开始。为了在不触发安全验证的前提下最大化所获取的航班数量,每次页面显示后,单击“加载更多结果”。唯一的新内容就是所添加的try语句,因为有时按钮加载会出错。如果它对你也有用,只需在前面展示的start_kayak函数中进行简要注释。

# Load more results to maximize the scraping

def load_more():

try:

more_results = '//a[@class = “moreButton”]'

driver.find_element_by_xpath(more_results).click()

# Printing these notes during the program helps me quickly check what it is doing

print('sleeping…..')

sleep(randint(45,60))

except:

pass

现在,经过这么长的介绍,已经准备好定义实际爬取页面的函数。

我们编译了下一个函数page_scrape中的大部分元素。有时这些元素会返回列表插入去程信息和返程信息之间。这里使用了一个简单的办法分开它们,比如在第一个 section_a_list和section_b_list变量中,该函数还返回一个flight_df数据表。所以可以分离在不同分类下得到的结果,之后再把它们合并起来。

def page_scrape():

“““This function takes care of the scraping part”““

xp_sections = '//*[@class=“section duration”]'

sections = driver.find_elements_by_xpath(xp_sections)

sections_list = [value.text for value in sections]

section_a_list = sections_list[::2] # This is to separate the two flights

section_b_list = sections_list[1::2] # This is to separate the two flights

# if you run into a reCaptcha, you might want to do something about it

# you will know there's a problem if the lists above are empty

# this if statement lets you exit the bot or do something else

# you can add a sleep here, to let you solve the captcha and continue scraping

# i'm using a SystemExit because i want to test everything from the start

if section_a_list == []:

raise SystemExit

# I'll use the letter A for the outbound flight and B for the inbound

a_duration = []

a_section_names = []

for n in section_a_list:

# Separate the time from the cities

a_section_names.append(''.join(n.split()[2:5]))

a_duration.append(''.join(n.split()[0:2]))

b_duration = []

b_section_names = []

for n in section_b_list:

# Separate the time from the cities

b_section_names.append(''.join(n.split()[2:5]))

b_duration.append(''.join(n.split()[0:2]))

xp_dates = '//div[@class=“section date”]'

dates = driver.find_elements_by_xpath(xp_dates)

dates_list = [value.text for value in dates]

a_date_list = dates_list[::2]

b_date_list = dates_list[1::2]

# Separating the weekday from the day

a_day = [value.split()[0] for value in a_date_list]

a_weekday = [value.split()[1] for value in a_date_list]

b_day = [value.split()[0] for value in b_date_list]

b_weekday = [value.split()[1] for value in b_date_list]

# getting the prices

xp_prices = '//a[@class=“booking-link”]/span[@class=“price option-text”]'

prices = driver.find_elements_by_xpath(xp_prices)

prices_list = [price.text.replace('$','') for price in prices if price.text != '']

prices_list = list(map(int, prices_list))

# the stops are a big list with one leg on the even index and second leg on odd index

xp_stops = '//div[@class=“section stops”]/div[1]'

stops = driver.find_elements_by_xpath(xp_stops)

stops_list = [stop.text[0].replace('n','0') for stop in stops]

a_stop_list = stops_list[::2]

b_stop_list = stops_list[1::2]

xp_stops_cities = '//div[@class=“section stops”]/div[2]'

stops_cities = driver.find_elements_by_xpath(xp_stops_cities)

stops_cities_list = [stop.text for stop in stops_cities]

a_stop_name_list = stops_cities_list[::2]

b_stop_name_list = stops_cities_list[1::2]

# this part gets me the airline company and the departure and arrival times, for both legs

xp_schedule = '//div[@class=“section times”]'

schedules = driver.find_elements_by_xpath(xp_schedule)

hours_list = []

carrier_list = []

for schedule in schedules:

hours_list.append(schedule.text.split('\n')[0])

carrier_list.append(schedule.text.split('\n')[1])

# split the hours and carriers, between a and b legs

a_hours = hours_list[::2]

a_carrier = carrier_list[1::2]

b_hours = hours_list[::2]

b_carrier = carrier_list[1::2]

cols = (['Out Day', 'Out Time', 'Out Weekday', 'Out Airline', 'Out Cities', 'Out Duration', 'Out Stops', 'Out Stop Cities',

'Return Day', 'Return Time', 'Return Weekday', 'Return Airline', 'Return Cities', 'Return Duration', 'Return Stops', 'Return Stop Cities',

'Price'])

flights_df = pd.DataFrame({'Out Day': a_day,

'Out Weekday': a_weekday,

'Out Duration': a_duration,

'Out Cities': a_section_names,

'Return Day': b_day,

'Return Weekday': b_weekday,

'Return Duration': b_duration,

'Return Cities': b_section_names,

'Out Stops': a_stop_list,

'Out Stop Cities': a_stop_name_list,

'Return Stops': b_stop_list,

'Return Stop Cities': b_stop_name_list,

'Out Time': a_hours,

'Out Airline': a_carrier,

'Return Time': b_hours,

'Return Airline': b_carrier,

'Price': prices_list})[cols]

flights_df['timestamp'] = strftime(“%Y%m%d-%H%M”) # so we can know when it was scraped

return flights_df

尽量让这些名字容易理解。记住变量a表示旅行的去程信息,变量b表示旅行的返程信息。接下来说说下一个函数。

等等,还有什么吗?

截至目前,已经有了一个能加载更多结果的函数和一个能爬取其他结果的函数。本可以在此结束这篇文章,而你可以自行手动使用这些函数,并在浏览的页面上使用爬取功能。但是前文提到给自己发送邮件和一些其他信息的内容,这都包含在接下来的函数start_kayak中。

它要求填入城市名和日期,并由此打开一个kayak字符串中的地址,该字符串直接跳转到“最佳”航班结果排序页面。第一次爬取后,可以获取价格的顶部矩阵,这个矩阵将用于计算平均值和最小值,之后和客涯(Kayak)的预测结果(页面左上角)一同发送到邮件中。这是单一日期搜索时可能导致错误的原因之一,因其不包含矩阵元素。

def start_kayak(city_from, city_to, date_start, date_end):

“““City codes it's the IATA codes!

Date format YYYY-MM-DD”““

kayak = ('https://www.kayak.com/flights/' + city_from + '-' + city_to +

'/' + date_start + '-flexible/' + date_end + '-flexible?sort=bestflight_a')

driver.get(kayak)

sleep(randint(8,10))

# sometimes a popup shows up, so we can use a try statement to check it and close

try:

xp_popup_close = '//button[contains(@id,”dialog-close”) and contains(@class,”Button-No-Standard-Style close “)]'

driver.find_elements_by_xpath(xp_popup_close)[5].click()

except Exception as e:

pass

sleep(randint(60,95))

print('loading more.....')

# load_more()

print('starting first scrape.....')

df_flights_best = page_scrape()

df_flights_best['sort'] = 'best'

sleep(randint(60,80))

# Let's also get the lowest prices from the matrix on top

matrix = driver.find_elements_by_xpath('//*[contains(@id,”FlexMatrixCell”)]')

matrix_prices = [price.text.replace('$','') for price in matrix]

matrix_prices = list(map(int, matrix_prices))

matrix_min = min(matrix_prices)

matrix_avg = sum(matrix_prices)/len(matrix_prices)

print('switching to cheapest results…..')

cheap_results = '//a[@data-code = “price”]'

driver.find_element_by_xpath(cheap_results).click()

sleep(randint(60,90))

print('loading more…..')

# load_more()

print('starting second scrape…..')

df_flights_cheap = page_scrape()

df_flights_cheap['sort'] = 'cheap'

sleep(randint(60,80))

print('switching to quickest results…..')

quick_results = '//a[@data-code = “duration”]'

driver.find_element_by_xpath(quick_results).click()

sleep(randint(60,90))

print('loading more…..')

# load_more()

print('starting third scrape…..')

df_flights_fast = page_scrape()

df_flights_fast['sort'] = 'fast'

sleep(randint(60,80))

# saving a new dataframe as an excel file. the name is custom made to your cities and dates

final_df = df_flights_cheap.append(df_flights_best).append(df_flights_fast)

final_df.to_excel('search_backups//{}_flights_{}-{}_from_{}_to_{}.xlsx'.format(strftime(“%Y%m%d-%H%M”),

city_from, city_to,

date_start, date_end), index=False)

print('saved df…..')

# We can keep track of what they predict and how it actually turns out!

xp_loading = '//div[contains(@id,”advice”)]'

loading = driver.find_element_by_xpath(xp_loading).text

xp_prediction = '//span[@class=“info-text”]'

prediction = driver.find_element_by_xpath(xp_prediction).text

print(loading+'\n'+prediction)

# sometimes we get this string in the loading variable, which will conflict with the email we send later

# just change it to “Not Sure” if it happens

weird = '¯\\_(ツ)_/¯'

if loading == weird:

loading = 'Not sure'

username = 'YOUREMAIL@hotmail.com'

password = 'YOUR PASSWORD'

server = smtplib.SMTP('smtp.outlook.com', 587)

server.ehlo()

server.starttls()

server.login(username, password)

msg = ('Subject: Flight Scraper\n\n\

Cheapest Flight: {}\nAverage Price: {}\n\nRecommendation: {}\n\nEnd of message'.format(matrix_min, matrix_avg, (loading+'\n'+prediction)))

message = MIMEMultipart()

message['From'] = 'YOUREMAIL@hotmail.com'

message['to'] = 'YOUROTHEREMAIL@domain.com'

server.sendmail('YOUREMAIL@hotmail.com', 'YOUROTHEREMAIL@domain.com', msg)

print('sent email…..')

虽然没有使用Gmail账户测试发送邮件,但是可以搜索到很多的替代方法,前文提到的那本书中也有其他方法来实现这一点。如果已有一个Hotmail账户,只要替换掉个人的详细信息,它就会开始工作了。

如果想探索脚本的某一部分正在做什么,可以将脚本复制下来并在函数外使用它。这是彻底理解它的唯一方法。

利用刚才创造的一切

在这些步骤之后,还可以想出一个简单的循环来使用刚创造的函数,同时使其持续运行。完成四个“花式”提示,写下城市和日期(输入)。因为测试时不想每次都输入这些变量,需要的时候可以使用以下这个清楚的方式进行替换。

如果已经做到了这一步,恭喜你!改进还有很多,比如与Twilio集成,发送文本消息而不是邮件。也可以使用VP*或更加难懂的方式同时从多个服务器上研究搜索结果。还有就是验证码的问题,验证码会时不时地跳出来,但对此类问题还是有解决办法的。不过,能走到这里已经是有很牢固的基础了,你可以尝试添加一些额外的要素。

使用脚本运行测试的示例

留言 点赞 关注

我们一起分享AI学习与发展的干货

欢迎关注全平台AI垂类自媒体 “读芯术”

电脑板我的世界花雨庭被误封了?

相信很多玩家都会被游戏误封,自己原本没有开挂,却被系统判定为开挂,那今天我就来教大家我的世界被封禁如何进行申诉!

1

登入网易我的世界论坛

2

找到事务处理版块

3

点击箭头所指的地方

4

我们就会看到弹出一个新的网页。

我们在箭头所指的地方输入标题,例如:没有开挂莫名其妙的被封号了

5

选择禁止登录

6

在箭头所指的方向输入被封禁服务器的名称

7

在箭头所指方向输入被封禁的游戏昵称

8

在箭头所指方向输入游戏账号

9

在最后的条框中输入事情描述,例如:和朋友玩起床战争,莫名其妙的就被封禁了

输入完成后,点击发帖即可,客服将在七个工作日之内联系到你

注意事项

如果真的开了挂,请不要恶意申诉!

PHP的工作只有商城和二次开发吗?

并不是这样,目前我从事的就不是商城类和二次开发。为什么会有这样的错觉,关键是没有接触到其他的,你所找的公司性质,服务的对象。像为政府、医院、这些偏向应用的服务对象,他们是需要解决某些实际问题的,当然就不会是商城,也没有类似的二次开发可言。面对这样的需求,是需要对整个项目,应用做全面的分析,设计把控全局。这样能学到的东西也比较多,像是分析客户需求、设计程序思想、与人沟通、不同语言之间的协调等。

python就业前景怎么样?

前言

当前互联网对于拥有专业技能的人才或新兴的人工智能、大数据、区块链方向的技术人员缺口是很大的,而Python 已经是数据分析和 AI的第一语言,网络攻防的第一黑客语言,正在成为编程入门教学的第一语言,云计算系统管理第一语言,也成为Web 开发、游戏脚本、计算机视觉、物联网管理和机器人开发的主流语言之一,随着 Python 用户可以预期的增长,它还有机会在多个领域里登顶,所以python是一门很有前景的开发语言。

下面着重介绍一些重点方面。

Python

Python, 是一种面向对象的解释型计算机程序设计语言。Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。

主要方向

1、爬虫

爬虫,即网络爬虫,大家可以理解为在网络上爬行的一直蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛咯,如果它遇到资源,那么它就会抓取下来。

2、人工智能方向

这是python的热门方向,现在各家大公司都为python提供了在人工智能方面的解决方案。包括facebook和谷歌,下面来介绍一下这两大公司的方案:

TensorFlow

TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。TensorFlow可被用于语音识别或图像识别等多项机器学习和深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。

Caffe2

一个兼具表现力、速度和模块性的开源深度学习框架。它沿袭了大量的 Caffe 设计,可解决多年来在 Caffe 的使用和部署之中发现的瓶颈问题。最终,Caffe2 打开了算法实验和新产品的大门。通过在内部用于各种深度学习和增强现实任务,Caffe2 已经在 Facebook 对于规模和性能的需求上得到了锻造。

--------------------------------------------------

本人现处广州从事互联网工作多年,资深技术人员、管理人员。愿结识有互联网业务的技术人员或企业人员。

Zookeeper是怎样实现分布式锁?

Apache Zookeeper是我最近遇到的最酷的技术,我是在研究Solr Cloud功能的时候发现的。Solr的分布式计算让我印象深刻。你只要开启一个新的实例就能自动在Solr Cloud中找到。它会将自己分派到某个分片中,并确定出自己是一个Leader(源)还是一个副本。不一会儿,你就可以在你的那些服务器上查询到了。即便某些服务器宕机了也可以继续工作。非常动态、聪明、酷。

将运行多个应用程序作为一个逻辑程序并不是什么新玩意。事实上,我在几年前就已写过类似的软件。这种架构比较让人迷惑,使用起来也费劲。为此Apache Zookeeper提供了一套工具用于管理这种软件。

为什么叫Zoo?“因为要协调的分布式系统是一个动物园”。

在本篇文章中,我将说明如何使用PHP安装和集成Apache ZooKeeper。我们将通过service来协调各个独立的PHP脚本,并让它们同意某个成为Leader(所以称作Leader选举)。当Leader退出(或崩溃)时,worker可检测到并再选出新的leader。

ZooKeeper是一个中性化的Service,用于管理配置信息、命名、提供分布式同步,还能组合Service。所有这些种类的Service都会在分布式应用程序中使用到。每次编写这些Service都会涉及大量的修bug和竞争情况。正因为这种编写这些Service有一定难度,所以通常都会忽视它们,这就使得在应用程序有变化时变得难以管理应用程序。即使处理得当,实现这些服务的不同方法也会使得部署应用程序变得难以管理。

虽然ZooKeeper是一个Java应用程序,但C也可以使用。这里就有个PHP的扩展,由Andrei Zmievski在2009创建并维护。你可以从PECL中下载,或从GitHub中直接获取PHP-ZooKeeper。

要使用该扩展你首先要安装ZooKeeper。可以从官方网站下载。

$ tar zxfv zookeeper-3.4.5.tar.gz $ cd zookeeper-3.4.5/src/c $ ./configure --prefix=/usr/ $ make $ sudo make install

这样就会安装ZooKeeper的库和头文件。现在准备编译PHP扩展。

$ cd$ git clone https://github.com/andreiz/php-zookeeper.git $ cd php-zookeeper $ phpize $ ./configure $ make $ sudo make install

将“zookeeper.so”添加到PHP配置中。

$ vim /etc/php5/cli/conf.d/20-zookeeper.ini

因为我不需要运行在web服务环境下,所以这里我只编辑了CLI的配置。将下面的行复制到ini文件中。

extension=zookeeper.so

使用如下命令来确定扩展是否已起作用。

$ php -m | grep zookeeper zookeeper

现在是时候运行ZooKeeper了。目前唯一还没有做的是配置。创建一个用于存放所有service数据的目录。

$ mkdir /home/you-account/zoo $ cd$ cd zookeeper-3.4.5/ $ cp conf/zoo_sample.cfg conf/zoo.cfg $ vim conf/zoo.cfg

找到名为“dataDir”的属性,将其指向“/home/you-account/zoo”目录。

$ bin/zkServer.sh start $ bin/zkCli.sh -server 127.0.0.1:2181[zk: 127.0.0.1:2181(CONNECTED) 14] create /test 1 Created /test[zk: 127.0.0.1:2181(CONNECTED) 19] ls /[test, zookeeper]

此时,你已成功连到了ZooKeeper,并创建了一个名为“/test”的znode(稍后我们会用到)。ZooKeeper以树形结构保存数据。这很类似于文件系统,但“文件夹”(译者注:这里指非最底层的节点)又和文件很像。znode是ZooKeeper保存的实体。Node(节点)的说法很容易被混淆,所以为了避免混淆这里使用了znode。

因为我们稍后还会使用,所以这里我们让客户端保持连接状态。开启一个新窗口,并创建一个zookeeperdemo1.php文件。

<?php class ZookeeperDemo extends Zookeeper { public function watcher( $i, $type, $key ) { echo "Insider Watcher\n"; // Watcher gets consumed so we need to set a new one $this->get( '/test', array($this, 'watcher' ) ); } } $zoo = new ZookeeperDemo('127.0.0.1:2181');$zoo->get( '/test', array($zoo, 'watcher' ) ); while( true ) { echo '.'; sleep(2);}

现在运行该脚本。

$ php zookeeperdemo1.php

此处应该会每隔2秒产生一个点。现在切换到ZooKeeper客户端,并更新“/test”值。

[zk: 127.0.0.1:2181(CONNECTED) 20] set /test foo

这样就会静默触发PHP脚本中的“Insider Watcher”消息。怎么会这样的?

ZooKeeper提供了可以绑定在znode的监视器。如果监视器发现znode发生变化,该service会立即通知所有相关的客户端。这就是PHP脚本如何知道变化的。Zookeeper::get方法的第二个参数是回调函数。当触发事件时,监视器会被消费掉,所以我们需要在回调函数中再次设置监视器。

现在你可以准备创建分布式应用程序了。其中的挑战是让这些独立的程序决定哪个(是leader)协调它们的工作,以及哪些(是worker)需要执行。这个处理过程叫做leader选举,在ZooKeeper Recipes and Solutions你能看到相关的实现方法。

这里简单来说就是,每个处理(或服务器)紧盯着相邻的那个处理(或服务器)。如果一个已被监视的处理(也即Leader)退出或者崩溃了,监视程序就会查找其相邻(此时最老)的那个处理作为Leader。

在真实的应用程序中,leader会给worker分配任务、监控进程和保存结果。这里为了简化,我跳过了这些部分。

创建一个新的PHP文件,命名为worker.php。

<?php class Worker extends Zookeeper { const CONTAINER = '/cluster'; protected $acl = array( array( 'perms' => Zookeeper::PERM_ALL, 'scheme' => 'world', 'id' => 'anyone' ) ); private $isLeader = false; private $znode; public function __construct( $host = '', $watcher_cb = null, $recv_timeout = 10000 ) { parent::__construct( $host, $watcher_cb, $recv_timeout ); } public function register() { if( ! $this->exists( self::CONTAINER ) ) { $this->create( self::CONTAINER, null, $this->acl ); } $this->znode = $this->create( self::CONTAINER . '/w-', null, $this->acl, Zookeeper::EPHEMERAL | Zookeeper::SEQUENCE ); $this->znode = str_replace( self::CONTAINER .'/', '', $this->znode ); printf( "I'm registred as: %s\n", $this->znode ); $watching = $this->watchPrevious(); if( $watching == $this->znode ) { printf( "Nobody here, I'm the leader\n" ); $this->setLeader( true ); } else { printf( "I'm watching %s\n", $watching ); } } public function watchPrevious() { $workers = $this->getChildren( self::CONTAINER ); sort( $workers ); $size = sizeof( $workers ); for( $i = 0 ; $i < $size ; $i++ ) { if( $this->znode == $workers[ $i ] ) { if( $i > 0 ) { $this->get( self::CONTAINER . '/' . $workers[ $i 1 ], array( $this, 'watchNode' ) ); return $workers[ $i 1 ]; } return $workers[ $i ]; } } throw new Exception( sprintf( "Something went very wrong! I can't find myself: %s/%s", self::CONTAINER, $this->znode ) ); } public function watchNode( $i, $type, $name ) { $watching = $this->watchPrevious(); if( $watching == $this->znode ) { printf( "I'm the new leader!\n" ); $this->setLeader( true ); } else { printf( "Now I'm watching %s\n", $watching ); } } public function isLeader() { return $this->isLeader; } public function setLeader($flag) { $this->isLeader = $flag; } public function run() { $this->register(); while( true ) { if( $this->isLeader() ) { $this->doLeaderJob(); } else { $this->doWorkerJob(); } sleep( 2 ); } } public function doLeaderJob() { echo "Leading\n"; } public function doWorkerJob() { echo "Working\n"; } } $worker = new Worker( '127.0.0.1:2181' );$worker->run();

打开至少3个终端,在每个终端中运行以下脚本:

# term1 $ php worker.php I'm registred as: w-0000000001Nobody here, I'm the leader Leading # term2 $ php worker.php I'm registred as: w-0000000002I'm watching w-0000000001 Working # term3 $ php worker.php I'm registred as: w-0000000003I'm watching w-0000000002 Working

现在模拟Leader崩溃的情形。使用Ctrl+c或其他方法退出第一个脚本。刚开始不会有任何变化,worker可以继续工作。后来,ZooKeeper会发现超时,并选举出新的leader。

虽然这些脚本很容易理解,但是还是有必要对已使用的Zookeeper标志作注释。

$this->znode = $this->create( self::CONTAINER . '/w-', null, $this->acl, Zookeeper::EPHEMERAL | Zookeeper::SEQUENCE );

每个znode都是EPHEMERAL和SEQUENCE的。

EPHEMRAL代表当客户端失去连接时移除该znode。这就是为何PHP脚本会知道超时。SEQUENCE代表在每个znode名称后添加顺序标识。我们通过这些唯一标识来标记worker。

在PHP部分还有些问题要注意。该扩展目前还是beta版,如果使用不当很容易发生segmentation fault。比如,不能传入普通函数作为回调函数,传入的必须为方法。我希望更多PHP社区的同仁可以看到Apache ZooKeeper的好,同时该扩展也会获得更多的支持。

ZooKeeper是一个强大的软件,拥有简洁和简单的API。由于文档和示例都做的很好,任何人都可以很容易的编写分布式软件。让我们开始吧,这会很有趣的。

本文转载自互联网,如有侵权,联系删除