今天给各位分享黄铜矿发光性的知识,其中也会对黄铜矿有放射性吗进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录:
黄铜矿的特性
黄铜矿是 一种铜铁硫化物矿物。化学式:CuFeS2,常含微量的金、银等。晶体相对少见,为四面体状;多呈不规则粒状及致密块状集合体,也有肾状、葡萄状集合体。黄铜黄色,时有斑状锖色。条痕为微带绿的黑色。黄铜矿是一种较常见的铜矿物,几乎可形成于不同的环境下。但主要是热液作用和接触交代作用的产物,常可形成具一定规模的矿床。产地遍布世界各地。在工业上,它是炼铜的主要原料。在宝石学领域,它很少被单独利用,偶尔用作黄铁矿的代用品。另它常参与一些彩石、砚石和玉石的组成。
物理性质:主要成分名称:二硫化亚铁铜。化学式:CuFeS2.。铜铁都为正二价硫为负二价。
黄铜[1]黄色,表面常有蓝、紫褐色的斑状锖色。绿黑色条痕。金属光泽,不透明。解理∥{112}、{101}不完全。硬度3~4。性脆。相对密度4.1~4.3。
产状与组合:分布较广。岩浆型,产于与基性、超基性岩有关的铜镍硫化物矿床中,与磁黄铁矿、镍黄铁矿密切共生。接触交代型,与磁铁矿、黄铁矿、磁黄铁矿等共生;亦可与毒砂或方铅矿、闪锌矿等共生。热液型,常呈中温热液充填或交代脉状,与黄铁矿、方铅矿、闪锌矿、斑铜矿、辉钼矿及方解石、石英等共生。在地表风化条件下遭受氧化后形成CuSO4和FeSO4,遇石灰岩形成孔雀石、蓝铜矿或褐铁矿铁帽;在次生富集带则转变为斑铜矿和辉铜矿,可作找矿标志鉴定特征:其致密块体有时与黄铁矿相似,可以其较深的黄铜黄色及较低的硬度相区别。以其脆性与自然金(强延展性)区别。
工业应用:最重要的铜矿石矿物。
矿物的光学性质
矿物的光学性质(optical properties)主要指矿物对可见光的反射、折射、吸收等所表现出来的各种性质,包括颜色、条痕、光泽和透明度;也指矿物受不同能量激发而发出可见光的性质即发光性。
1.矿物的颜色
颜色(color)是矿物对入射的自然可见光(波长为390~770nm)中不同波长的光波选择性吸收后,透射和反射出来的各种波长可见光的混合色。
自然可见光是由红、橙、黄、绿、蓝、青、紫7 种颜色的光波混合而成的。不同色光的波长不同,彼此存在特定的互补关系。图12-1所示对角扇形区的颜色互为补色。当矿物对自然光中不同波长的光波均匀地全部吸收时,矿物呈现黑色;若基本上都不吸收,则为无色或白色;若各色光被均匀地部分吸收,则呈现不同浓度的灰色。如果矿物选择性地吸收某种波长的色光时,则矿物将呈现出被吸收色光的补色。
矿物呈色有多方面的原因,据此将矿物的颜色分为自色、他色和假色。
图12-1 不同色光间的互补关系
(1)自色
自色(idiochromatic color)是矿物本身固有化学成分和晶体结构决定的对自然光选择性吸收、折射和反射而表现出来的颜色,是光波与晶格中的电子相互作用的结果。对一定的矿物而言,自色通常比较固定,是矿物鉴定的首选标志。
光波与晶格中电子相互作用而致色的机理主要有以下4种:
离子内部电子跃迁(internal electron transition)致色 这是含过渡型离子矿物呈色的主要方式。过渡型离子具有未填满的d或f轨道,在配位阴离子作用下,这些轨道发生能级分裂,形成两组或几组不同能级的轨道,各组间的能量差(即晶体场分裂能)与可见光的能量相当。当可见光照射时,位于低能轨道上的电子便能吸收与晶体场分裂能相当的色光,跃迁到较高能级的轨道上(称为d—d跃迁或f—f跃迁)。由于部分色光被吸收,矿物便呈现出其补色。红宝石(含铬刚玉)就是类质同象的Cr3+中3个d电子吸收绿光并跃迁而呈现红色的。由于矿物中的过渡型离子存在不饱和的d或f轨道,自然光照射时能实现d—d或f—f跃迁而使矿物呈色,因而被称为色素离子(chromophoric ion)。这类离子主要有元素周期表中第4周期的Ti,V,Cr,Mn,Fe,Co,Ni;其次为W,Mo,U,Cu和稀土元素的离子,而最常见的是可分别使矿物致绿色和褐红色的Fe2+和Fe3+(表12-1)。
表12-1 常见色素离子使矿物呈色举例
离子间电荷转移(interionic charge transfer)致色 矿物中一些变价元素的离子在光波作用下可以发生相邻离子间的电子转移,发生光化学氧化-还原反应。由于电子转移过程中部分光波被吸收,矿物便呈现这部分光波的补色。当矿物晶格中相互连接的配位多面体中存在同种元素的不同价离子如Fe2+和Fe3+,Mn2+和Mn3+或Ti3+和Ti4+时,这种电子转移极易发生。蓝闪石呈蓝色就是其结构中Fe2+与Fe3+之间电荷转移的结果。
能带间电子跃迁(interband transition)能带理论认为,矿物中原子或离子的外层电子均处于一定的能带。被电子占满的能带能量较低,称满带或价带(valence band),未被电子占满的能带能量较高,为导带(conduction band),能带间的能量间隙为禁带(forbidden band)。若禁带宽度与某种可见色光能量相当,矿物受自然光照射时,处于满带或价带的低能电子便会吸收能量大于禁带的部分色光而跃过禁带到达高能态的导带,从而使矿物呈色。许多自然金属或硫化物矿物的禁带宽度很窄。自然铜等金属的禁带宽度为0,黄铁矿和方铅矿等具金属光泽的硫化物矿物小于1.7eV,即小于红光的能量,各种波长的色光均能被大量吸收而使之透明度极差;同时跃迁后处于激发态的电子又极易回到基态而放出大部分能量而表现为很强的反射能力和金属光泽及金属色。辰砂和雄黄等具金刚光泽的硫化物的禁带宽度在2.0~2.5eV,即橙色光至绿色光之间,因而也能选择性吸收色光而呈鲜明的彩色。许多铜型离子(见矿物的化学成分)的硫化物矿物禁带较窄与晶格中离子的极化有关,这些离子的卤化物和含氧盐矿物晶格中无明显的极化现象,因而多无色透明或呈白色。
色心(color centre)对于无色透明的晶体,其禁带宽度大于可见光的能量,核外电子不能吸收任何能量的可见光。但是,当矿物晶格中某种离子含量过剩、缺失,或存在杂质离子及机械变形等引起晶体内点电荷不平衡而成缺陷时,缺陷部位的电子跃迁所需能量若减小到与可见光相当的程度,可见光照射时便能选择性吸收色光而转移并呈色。这种能选择性吸收可见光波的晶格缺陷称为色心。大部分碱金属和碱土金属化合物矿物的呈色主要与色心有关。最常见的色心是晶格中阴离子空位而产生的F心,缺陷部位的正电荷过剩,当光线照射时,晶体内的电子选择性吸收某种色光获得能量而向阴离子缺失部位移动以平衡电荷,导致矿物呈现被吸收光的补色。萤石(CaF2)的紫色和石盐(NaCl)的蓝色就分别是因晶格中F-和Cl-空位所引起的F心所致。
按照矿物呈色的机理,还可将自色分为体色(body color)和表面色(surface color)。透明矿物的颜色多为前者,如橄榄石的橄榄绿;金属晶格矿物的颜色多为后者,如黄铁矿的浅铜黄色。体色是透射光的颜色,为被吸收光的补色;表面色是反射光的颜色,是吸收能量后处于激发态的电子回到基态时释放出来的能量,与被吸收色光的颜色一致。
矿物的颜色千变万化,初学描述时常需借助实物进行比较。表12-2中的矿物颜色较稳定,可作为比较的标准。与标准有差异的,可用复合词进行描述,如黄铁矿为淡铜黄色,绿帘石为黄绿色等。另外,还要注意区分金属色和非金属色(表12-2),金属色要加用金属的名称作前缀。
表12-2 矿物的标准色
(2)他色
他色(allochromatic color)是指矿物因含外来的带色杂质所形成的颜色,它与矿物本身的成分和结构无关,不是矿物固有的颜色,因此无鉴定意义,但有重要的成因意义。如我国云南金厂金矿区的某些热液石英因含大量微粒铬云母而呈绿色,显示成矿流体与该区的超基性岩有过强烈的水-岩反应,成矿物质部分来自该超基性岩体。
(3)假色
假色(pseudochromatic color)是自然光照射到矿物表面或内部,受到某种物理界面(氧化膜、裂隙、包裹体等)的作用而发生干涉、衍射、散射等所产生的颜色。假色是一种物理光学效应,只对少数矿物有辅助鉴定意义,在宝石学上也有一定意义。矿物中常见的假色主要有:
锖色(tarnish)某些不透明矿物表面的氧化膜使反射光发生干涉而呈现不均匀的彩色即锖色。锖色只见于矿物表面,剥除氧化膜后锖色消失。斑铜矿表面具有独特的蓝、靛、红、紫等不均匀锖色,是其鉴定特征之一。
晕色(iridescence)某些透明矿物内部存在一系列平行密集的解理面或裂隙面,它们对光的连续反射引起光的干涉,使矿物解理面和晶面呈现彩虹般的色带,称为晕色。白云母、冰洲石、透石膏等无色透明矿物解理面上可见到晕色。
变彩(play of color)某些透明矿物内部存在许多微细叶片状或层状结构界面,可引起可见光的衍射干涉作用而出现不均匀色彩,从不同方向观察时,这种不均匀色彩随方向而变换。例如,贵蛋白石具蓝、绿、紫、红等色的变彩;拉长石可出现蓝绿、金黄、红紫等变彩。
乳光(也称蛋白光,opalescence)某些矿物含有许多远小于可见光波长的其他矿物或胶体微粒,使入射光发生漫反射而生成的一种乳白色浮光。月长石(钾长石和钠长石交互生成显微层片状结构的特殊条纹长石)和乳蛋白石均可见到这种乳光。
2.矿物的条痕
矿物的条痕(streak)是指其粉末的颜色,通常将矿物在素瓷(白色无釉瓷板)上擦划后获得。矿物粉末表面粗糙,反射力弱,所以条痕多是穿过粉末的透射光的颜色。
一些矿物的条痕与其呈颗粒或块体状态时的颜色不同。因为矿物变成粉末时消除了假色、减弱了他色、突出了自色,所以条痕比矿物颗粒或块体的颜色更为稳定,更有鉴定意义。例如,不同成因的赤铁矿可呈现钢灰、铁黑、褐红等色调,但其条痕总是呈特征的红棕色(或称樱红色)。
由于具金属晶格的不透明矿物粉末表面反射消失,亦不能透光,故呈现黑色条痕,如黄铁矿、黄铜矿、方铅矿等许多具金属色的硫化物条痕都为黑色。半透明矿物粉末对光波有明显的吸收,其条痕与大颗粒的颜色基本相同,如辰砂条痕为红色,孔雀石条痕为绿色。透明矿物的粉末几乎不吸收光波,其条痕均为白色或很浅的颜色,如普通辉石和普通角闪石的颜色为黑色,条痕却是白色。
显然,对于不透明矿物和彩色或深色半透明—透明矿物,尤其是硫化物或部分氧化物和自然元素矿物,条痕是重要鉴定特征;而对于白色、无色或浅色的透明矿物,其条痕均为白色,无鉴定意义。
此外,类质同象混入物可使一些矿物的条痕和颜色作有规律的变化。例如,类质同象的铁在闪锌矿中增多时,其颜色从浅黄色变为铁黑色,条痕由黄白色变为褐色。这种变化能够反映矿物中类质同象组分的变化,能够提供介质物理化学条件的信息,具有一定的成因意义。
3.矿物的光泽
矿物的光泽(luster)是指矿物表面反射光时所表现的特征,是矿物反射可见光能力的度量。矿物的光泽应在新鲜平滑晶面或解理面上进行观察。
一般来说,矿物对可见光的折射或吸收越强,透光量就越少,反光量就越大,光泽就越强。
矿物光泽的精确表征需借助矿物的反射率数值。反射率(R)是平滑表面对垂直入射光反射的百分率。肉眼观察时,将矿物的光泽分为4个等级:
金属光泽(metallic luster)反射光的能力很强,类似于鲜亮的金属磨光面的光泽,R>20%,如方铅矿、黄铁矿和自然金等。
半金属光泽(submetallic luster)反光较强,对光的反射相对暗淡,类似于粗糙金属表面的光泽,R为15%~20%,如赤铁矿、铁闪锌矿和黑钨矿等。
金刚光泽(adamantine luster)反光略强,呈现金刚石(钻石)般的光泽,R为10%~15%,如浅色闪锌矿、雄黄和金刚石等。
玻璃光泽(vitreous luster)反光能力弱,类似于玻璃表面的光泽,R<10%,如方解石、石英和萤石等。
在不平坦的矿物表面或矿物集合体上观察时,矿物常表现出特征的变异光泽。这类变异光泽主要有:
1)油脂光泽(greasy luster):某些具玻璃或金刚光泽而解理不发育的浅色透明矿物,有时其表面如同附有一层油脂,呈油脂光泽,如石英、磷灰石、石榴子石等。
2)树脂光泽(resinous luster):在某些具金刚光泽的黄、褐或棕色透明矿物表面,有时可见到类似于树脂的特征,呈树脂光泽,如浅色闪锌矿和雄黄等。
3)沥青光泽(pitchy luster):某些解理不发育的半透明或不透明黑色矿物表面呈现乌黑光亮的沥青状特征,如沥青铀矿和富含Nb及Ta的锡石等。
4)珍珠光泽(pearly luster):一些具玻璃光泽的浅色透明矿物,有时会呈现出如同珍珠表面或蚌壳内壁那种柔和亮丽的光泽,称作珍珠光泽,如白云母和透石膏等。
5)丝绢光泽(silky luster):具玻璃光泽的浅色透明矿物,当以纤维状或鳞片状集合体产出时,表面常呈现出类似于丝绸织品在阳光下闪烁的光泽特征,称丝绢光泽,如纤维石膏和石棉等。
6)蜡状光泽(waxy luster):某些具玻璃光泽的,浅色透明的隐晶质或非晶质致密状矿物块体上,有时呈现出如蜡烛一样的表面特征,称蜡状光泽,如块状叶蜡石、蛇纹石等。
7)土状光泽(earthy luster):疏松多孔或细粒松散状矿物集合体,表面粗糙如土,暗淡无光,呈土状光泽,如块状高岭石和褐铁矿等。
影响矿物光泽的主要因素是化学键类型。一般具金属晶格的矿物,呈现金属或半金属光泽;具共价键、离子键或分子键的矿物,一般呈现玻璃光泽,少数呈金刚光泽。
描述矿物的光泽时,任一矿物均可依其对光的反射强弱判属金属光泽、半金属光泽、金刚光泽或玻璃光泽的某一等级;但是如因矿物的产出状态不同而表现出更具特征的变异光泽时,一般采用变异光泽的名称描述,因为矿物光泽的级别是确定的,而变异光泽会随着产出状态和观察面的不同而异,对宝石矿物的评价尤为重要。
4.矿物的透明度
矿物的透明度(transparency或diaphaneity)是指矿物允许可见光透过的程度。矿物的透明度依其透射率或吸收系数精确表达,或依其0.03mm厚的薄片在偏光显微镜下通过的透射光来衡量(分为透明矿物和不透明矿物),肉眼鉴定矿物时,依其碎片边缘的透光程度,结合颜色、条痕和光泽等综合判断。一般将矿物的透明度粗略地划分为3级:
透明(transparent或diaphanous)允许绝大部分光透过,矿物条痕常为无色或白色,玻璃光泽,如石英、方解石和普通角闪石等。
半透明(translucent)允许部分光透过,矿物条痕呈红、褐等各种彩色,金刚或半金属光泽,如辰砂、雄黄和黑钨矿等。
不透明(opaque)基本不允许光透过,矿物具黑色或金属色条痕,金属光泽,如方铅矿、磁铁矿和石墨等。
矿物的透明度主要取决于矿物对可见光的吸收程度,后者又与矿物的晶格类型和化学组成有关。一般地,金属晶格中存在着自由电子,对光线的吸收较强,因而透明度较低;原子晶格透明度较高;离子晶格中铜型离子对可见光的吸收很强,透明度低,过渡型和惰性气体型离子的吸收能力依次降低,透明度依次增高。
此外,矿物中的裂隙、包裹体及矿物的集合方式、颜色深浅和表面风化程度等均会影响矿物的透明度,因此结合其他光学性质判断矿物的透明度是比较可靠的。上述4种光学性质间的关系如表12-3。
表12-3 矿物颜色、条痕、光泽和透明度的关系
5.矿物的发光性
矿物的发光性(luminescence),是指矿物在某种外加能量的激发下发出可见光的性质。能使矿物发光的激发源很多,主要有:紫外线、可见光、电子束、X射线、γ射线、高速质子流、加热、加电、摩擦和化学试剂等。依据激发源的不同,可分为光致发光(激发源为紫外线、可见光等光线)、阴极射线发光(激发源为电子束)、高能辐射发光(激发源为X射线、γ射线、高速质子流)、热发光、电发光、摩擦发光和化学发光。
矿物能够在外加能量的激发下发光,可能存在两种机制。其一,当矿物受外加能量的激发时,其晶格中原子或离子的外层电子吸收外加能量,并从较低能级的基态跃迁到较高能级的激发态,这些电子在激发态不能稳定存在,因而将自动回落到基态。高能激发态的电子在向基态回落时会以一定波长的可见光的形式释放部分能量。矿物中以杂质存在的过渡元素的种类和数量常常决定矿物的发光性以及发射光的颜色和强度。其二,矿物中的晶格缺陷在形成后受周围放射性粒子的辐射而储集了一定的能量。当矿物受外加能量的激发时,会诱发存储在缺陷中的能量以一定波长可见光的形式释放出来。不同的矿物,受外加能量激发后发光所持续的时间各有不同。一般地,当停止激发后,矿物发光的持续时间在10-8s以上时,称发出的光为磷光(phosphorescence);发光的持续时间小于10-8s,称发出的光为荧光(fluorescence)。
目前,热发光技术已广泛应用于地质、陨石、考古、材料、核试验及环境等领域的研究,在矿床成因和找矿预测、地质年龄测定、地层划分对比、岩相古地理分析及地质温度估算等方面已有许多重要成果。阴极发光成像技术在沉积岩石学、矿物发生史、SHRIMP年代学及宝石鉴定方面也得到成功应用。光致发光是鉴定白钨矿、金刚石、独居石、钙铀云母及其找矿和选矿的有效方法。此外,鉴于多数矿物在不同条件和不同介质中形成时发光性多有差异,开发利用矿物发光性的应用领域还有很大的空间。
实验十 认识和描述矿物的光学性质
一、目的要求
1.了解矿物的呈色机理和颜色分类;
2.学会观察描述矿物光学性质的方法;
3.理解矿物光泽的概念并学会识别光泽;
4.掌握光学性质之间的关系。
二、难点
光泽的识别和光学性质之间的关系。
三、内容和方法
1.颜色:据矿物呈色的成因分为自色、他色和假色。
自色:由矿物的成分和结构所决定的颜色,如磁铁矿的铁黑色。
他色:由矿物中杂质、气液包裹体等引起的颜色,如蔷薇石英的粉红色。
假色:由于某些矿物因内部裂隙或表面氧化膜所引起光线干涉所呈现的颜色,有锖色(如斑铜矿、黄铜矿)和晕色(如方解石、白云母)两类。
矿物的颜色是矿物的重要鉴定特征,因此正确的描述矿物的颜色是极为重要的。为了使大家在描述矿物的颜色时尽量取得一致,通常用三种方法。
(1)标准色谱法:以下面矿物的颜色作为标准色。
①红色辰砂 ②橙色铬酸铅矿
③黄色雌黄 ④绿色孔雀石
⑤蓝色蓝铜矿 ⑥紫色紫水晶
⑦褐色褐铁矿 ⑧黑色黑色电气石
⑨灰色铝土矿 ⑩白色斜长石
(2)类比法:以生活中常见的实物颜色来描述。如橘红色(雄黄)、橄榄绿色(橄榄石)。
对于具金属光泽及部分半金属光泽的矿物来说,类比法尤为重要,在描述颜色时必须与金属类比,常见的有:
①铁黑色磁铁矿 ②钢灰色镜铁矿
③铅灰色方铅矿 ④锡白色毒砂
⑤银白色自然银 ⑥铜红色自然铜
⑦铜黄色黄铜矿 ⑧金黄色自然金
(3)二名法:用两种标准色来描述,其中主要颜色放在后面。如黄绿色,则以绿色为主,带有黄色色调。
在观察矿物的颜色时应注意必须观察矿物的新鲜面。当矿物遭受风化时,应用小刀刮去风化面露出新鲜面时再观察描述;观察描述矿物的颜色时还应注意首先观察其光泽,如为金属光泽的矿物,则必须采用与金属类比的方法来观察描述。
2.条痕:矿物的条痕是指矿物粉末的颜色。
一般采用矿物在瓷板上划动时留下的粉末的颜色作为条痕。观察描述的方法与矿物颜色相同。
3.光泽:矿物的光泽是指矿物表面反光的能力。
通常在晶面或解理面上观察矿物的光泽,据其反光的强弱划分为
金属光泽:方铅矿、黄铜矿
半金属光泽:镜铁矿、黑钨矿
金刚光泽:金刚石、闪锌矿
玻璃光泽:方解石、石英
此外,由于集合方式、断口等原因造成特殊的光泽,又称为变异光泽,主要有
油脂光泽:石英(断口)
丝绢光泽:纤维石膏、石棉(纤维状集合体)
珍珠光泽:白云石(极完全解理)
沥青光泽:沥青铀矿(半透明-不透明黑色集合体)
土状光泽:高岭石(土状集合体)
要反复观察标本,加深光泽等级的印象;注意光泽与条痕之间的关系,以帮助正确判断矿物的光泽;对变异光泽应初步有些感性知识,在以后各论的学习中再进一步学习掌握。
4.透明度:是指矿物透光的能力,分为透明、半透明、不透明三个等级。除直接观察外,主要借助条痕来帮助确定。
透明:条痕为无色、白色;
半透明:条痕为各种彩色;
不透明:条痕为黑色或金属色。
5.学习提示
(1)描述矿物的颜色时,先要确定其主要的色彩,再写明是否为金属色。例如:主要为灰色,但色调较暗且具金属色者,记录为暗铅灰色;又如:主要为红色带较深的棕色调就可描述为深棕红色。
(2)自色、他色和假色是根据呈色机制不同而划分的,一般情况下,肉眼是不易正确判定的,但矿物条痕色有时可以帮助判断。
1)凡颜色和条痕色的色调都较深,而且两者变化不大者,多为自色。
2)假色在成块的标本上才可见到,而在条痕上是不能看到的。
(3)怎样正确地测试矿物的条痕色?
1)选用尽可能新鲜纯净的矿物来测试其条痕色,条痕板应选用洁白、平整、坚硬的瓷板。
2)动手刻划条痕时,用力应轻而均匀,切忌过重、过猛,否则得到的将是矿物碎块的颜色,而不是矿物粉末的颜色。
3)若矿物硬度比条痕板大,则在条痕板上划不出条痕色,可将矿物压碎成粉末再观察(这类矿物多呈玻璃光泽);若为富延展性矿物则在条痕板上划不到粉末(实际上它们的条痕往往与颜色相同);至于弹性片状矿物更不易得到粉末,可用小刀在其表面刻划一下,这样既得到条痕,又测试了硬度。
(4)肉眼条件下正确判断光泽的方法
首先,应通过反复观察比较各种标准的光泽标本,初步掌握好判断光泽的感性基础。其次,对一些特殊的光泽,应掌握它们出现的条件。倘若矿物较新鲜时,应尽量在晶面上观察,如在断口上观察,描述时应加注明。当矿物不够新鲜时,应结合条痕色来判断其光泽。
1)凡条痕呈黑色、金属色者,属金属光泽,其余为非金属光泽(包括金刚光泽和玻璃光泽);
2)凡条痕呈浅彩色者,多属金刚光泽,其矿物颜色多呈较鲜艳的彩色;
3)凡条痕呈白色或无色者,多属玻璃光泽,少数为金刚光泽;
4)凡条痕呈黑色、解理不发育的金属矿物,一般呈半金属光泽,如磁铁矿。
(5)变异光泽本身不能代表某一光泽级别,它不是每一种矿物必定具备的,只是由于某些表面不平,或带有细小裂隙,或因矿物集合方式等因素造成,如矿物呈纤维状集合体可具有丝绢光泽。
6.发光性
在紫外光照射下,白钨矿呈天蓝色荧光;萤石呈紫色荧光。
在以酒精灯加热条件下(置于黑暗处),磷灰石矿粉呈绿色;萤石呈紫色或白色。
每个学生需认真观察,以学会对各种光学性质的确切描述。
四、作业
1.观察标准色谱法描述的矿物标本的颜色。
2.观察用类比法描述的金属光泽矿物的颜色。
3.观察用二名法描述的矿物的颜色。
4.观察他色、假色标本。
5.观察不同等级光泽的标本。
6.观察具变异光泽的标本。
7.观察各种透明度的标本。
8.在上述学习的基础上写出四种光学性质之间的关系。
9.参观矿物的发光性。作业记录内容、顺序和格式:
矿物学简明教程
五、思考题
1.四种光学性质(颜色、条痕、光泽和透明度)之间的关系。
2.何谓自色,产生自色的原因是什么?
3.为什么矿物的条痕比颜色更稳定?
4.四种晶格类型与矿物光学性质的关系。
铜矿的介绍
铜和铁的硫化物(Cu5FeS4)矿物,含铜量 63.3%,提炼铜的主要矿物原料之一。为等轴晶系,其高温变体为等轴晶系,称等轴斑铜矿。表面易氧化呈蓝紫斑状的锖色,因而得名。新鲜断面呈暗铜红色,金属光泽,莫氏硬度 3 ,比重4.9~5.0。常呈致密块状或分散粒状见于各种类型的铜矿床中,并常与黄铜矿共生。也形成于铜矿床的次生富集带,但不稳定,而被次生辉铜矿和铜蓝置换。在地表易风化成孔雀石和蓝铜矿。中国云南东川等铜矿床中有大量的斑铜矿。世界代表性产地是美国蒙大那州的比尤特,墨西哥卡纳内阿和智利丘基卡马塔等。
化学组成
Cu5FeS4,Cu63.33%,Fe11.12%,S25.55%。由于斑铜矿经常含有黄铜矿,辉铜矿显微包裹体,其实际成份变动很大;因为在高温时(400℃)斑铜矿与黄铜矿,辉铜矿呈固溶体,低温时发生固溶体离溶;
鉴定特征
斑铜矿,可以从其特有的暗铜红色及锖色中加以鉴定,并和辉铜矿与黄铜矿区别; 成因产状:斑铜矿为许多铜矿床中广泛分布的矿物;在热液成因的斑岩铜矿中,与黄铜矿,有时与辉钼矿、黄铁矿呈散染状分布于石英斑岩中;还见于某些接触变质的矽卡岩矿床中和铜矿床的次生富集带中;著名产地:世界著名产地有英国Cornwall和美国Alaska州(SaltChuokmine)Arizona州(Bagdad)等地。名称来源:1845年Haidinger为纪念奥地利矿物学家IgnatiusvonBorn(1742-1791)用其名字命名的铜和铁的硫化物;
晶体形态
四方偏三角面体晶类;晶体可见等轴状的立方体、八面体和菱形十二面体等假象外形,但极为少见,通常呈致密块状或不规则粒状;晶体结构:晶系和空间群:四方晶系(高温变体),空间群D42d—P421c(高温变体);晶胞参数:a0=1.095埃;粉晶数据:1.937(1)3.18(0.6)2.74(0.5)
物理性质
硬度:3;比重:4.9-5.3g/cm3;解理:(111)解理不完全;断口:贝壳状断口;颜色:新鲜面呈暗铜红色,在不新鲜面常被蓝紫斑状锖色所覆盖;条痕:灰黑色;透明度:不透明;光泽:金属光泽;发光性:无;其他:性脆,具导电性。
光学性质
反射色。新抛光面亮玫瑰褐色,但很快变暗而带紫。反射率:18.5(绿光),19(橙光),21(红光)。晶体化学:理论组成(wB%):Cu 63.33,Fe 11.12,S 25.55。因常含黄铜矿、辉铜矿、铜蓝等显微包裹体,实际成分范围:Cu 52~65,Fe 8~18,S 20~27。高温(475℃)时,斑铜矿与黄铜矿、辉铜矿成固溶体;低温时,斑铜矿和黄铜矿分离。 结构与形态:等轴晶系,a0=1.093nm;Z=8。晶体结构相当复杂。其中S作立方最紧密堆积,位于立方面心格子的角顶和面心,阳离子充填8个四面体空隙,但阳离子向四面体的中心移动,硫的强定向键随着金属接近面心而使结构稳定。金属原子占据每个四面体面上6个可能位置之一,每个四面体提供24种亚位置。Cu和Fe原子随机地占据尖端向上和向下的四面体空隙的3/4。四面体共棱。 六八面体晶类,Oh-m3m(3L44L36L29PC)。常呈致密块状或不规则粒状。产状与组合
产于基性岩及有关的Cu-Ni等矿床中与黄铜矿、钛铁矿等共生。产于热液型矿床中的斑铜矿,常含有显微片状黄铜矿包裹体,与黄铜矿、黄铁矿、方铅矿、黝铜矿、硫砷铜矿、辉铜矿等共生;有时与辉钼矿、自然金等共生。还见于某些夕卡岩矿床中,与其它铜的硫化物共生。在氧化带易转变成孔雀石、蓝铜矿、赤铜矿、褐铁矿等。
鉴定特征:特有的暗铜红色及锖色,硬度低。溶于硝酸,有铜的焰色反应。
工业应用
斑铜矿表面易氧化而呈紫蓝斑杂的锖色。斑铜矿的新鲜断面呈暗铜红色,金属光泽,摩斯硬度3,常成致密块状或分散粒状见于各种类型的铜矿床中,并经常与黄铜矿共生,斑铜矿也形成于铜矿床的次生硫化物富集带中。斑铜矿在地表易风化成孔雀石和蓝铜矿。中国云南东川等铜矿床中有大量斑铜矿。世界其他主要产地有美国蒙大那州的比尤特,墨西哥的卡纳内阿,智利的丘基卡马塔等。铜广泛用于电气﹑机械﹑车辆﹑船舶﹑建筑工业和民用器具。 黝铜矿Tetrahedrite,是一种铜、锑的硫化物矿物,通常产在矿脉中,与铜、银、铅和锌的矿物共生,黝铜矿常含有一些砷,并随砷的含量增加,向砷黝铜矿过渡,砷黝铜矿是固溶体的砷端成员。这两个矿物的产状、四面体的晶体外形和物理性质都很相似,以至不用化学方法就不能区别 它们。虽然,铜是主要的金属,但是,铁和锌常替代铜。在含银的变种,银黝铜矿中,银含量可高达18%,使这矿物成为一个有价值的银的矿石矿物。
化学成分
黝铜矿的化学成分为Cu12Sb4S13、晶体属等轴晶系的硫盐矿物。单晶体常呈四面体(tetrahedron),英文名即由此而来。
与其他铜矿的关系
黝铜矿与砷黝铜矿Cu12As4S13成类质同象系列。它们成分中的铜可被银、锌、汞、铁等类质同象置换。当某种元素达到一定含量时,则相应构成黝铜矿或砷黝铜矿的亚种,如银黝铜矿、黑黝铜矿(含汞)等。黝铜矿和砷黝铜矿呈钢灰至铁黑色,半金属光泽。摩斯硬度3~4,比重4.6(砷黝铜矿)至5.0(黝铜矿)。通常呈致密块状或粒状见于铜、铅、锌、银等金属硫化物的热液矿床中。黝铜矿虽然是分布最广的一种硫盐矿物,但数量一般不大,通常与伴生的其他铜矿物一起作为铜矿石利用。银黝铜矿是提炼银的来源之一。美国爱达荷州的桑夏恩以产银黝铜矿著名。中国一些多金属矿床中有不同数量的黝铜矿产出。 矿物名称
黑铜矿(黑铜矿变种与硅孔雀石半生) Tenorite var Melaconite with chrysocolla。 矿物化学组成:CuO;Cu 79.89%,O 20.11% 鉴定特征:显微镜下具有强非均质性。
成因产状
产于铜矿床氧化带和熔岩里;中国湖北大冶矽卡岩型铜铁矿床氧化带产出的黑铜矿,是辉铜矿风化产物,与黄铜矿、斑铜矿、赤铜矿、赤铜铁矿、自然铜、铜蓝、孔雀石等矿物共生或伴生;熔岩里产出的黑铜矿是升华作用的产物;著名产地:世界著名产地有中国云南、西藏等地。 名称来源:Tenorite源自意大利植物学家M.Tenore的名字; 晶体形态:斜方柱晶类;晶体呈发育的细小板状或叶片状,有时弯曲;主要单形有:平行双面a、c;斜方柱f、p、o;
晶体结构
晶系和空间群:单斜晶系;晶胞参数:a0=4.662,b0=3.417,c0=5.118埃; β=99°29sup1;;z=4;
粉晶数据
2.52(1)2.32(0.96)2.53(0.49)
物理性质
硬度:3.5-4.0 ;比重:5.8-6.4g/cm3 ;解理:解理在[011]晶带内;断口:贝壳状断口;颜色:钢灰色、铁黑色到黑色等;条痕:黑色;透明度:不透明;光泽:金属光泽 发光性:无;其他:性脆。光学性质:薄片中褐色。二轴晶。Nm=2.63(红光)。具明显多色性,Nm-亮褐,Ng-暗褐。光性方位:Nm//b,Np∧a=0°±。反射色亮灰白带黄。反射率Rm:20(红光),27.1(蓝光)。双反射白到灰白。
关于黄铜矿发光性和黄铜矿有放射性吗的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。