模拟电路里面所谓的波形叠加
如图所以,将不同波形在相同时刻的瞬时值进行相加后,再新坐标中重新画出来就可以了,如图中红色波形。
______________________________________________
将两个矩形波形在相同时刻的瞬时值进行相加后,在坐标中描点画出来就是叠加之后的波形。
两个信号是怎么相加的,例如一个正弦波和一个方波或锯齿波是怎么相加的
就是算术和,如图中的两例,波形1和波形2是两个原始信号波形,红紫色为相加后的波形。
把两个原始波形在每个时点的幅度逐一进行算术相加(同方向的相加、方向不同的就相减),就生成了一个新的波形,这就是结果-合成波形。
在示波器里,当选择Y1+Y2时,就是把两个输入信号Y1和Y2按上述方法进行相加,在屏幕上显示相加后的波形。
proteus如何实现波形的叠加
1、运行ISIS7professional点击虚拟仪器模式按钮。选择OSCILLOSCOPE(示波器),在绘图区点击鼠标左键,出现示波器图形,并移动鼠标到合适位置点击左键放置示波器。
2、依上述方法放置正弦波发生器并连接引脚。选中正弦波发生器并双击弹出属性设置面板,将频幅设置为1V,频率设置为50HZ,点击运行按钮,运行后会弹出示波器的显示面板,依据图中设置选项进行相应属性设置面板分为"波形显示区和设置区,在面板中可以对波形的各种显示模式进行设置。
波的叠加原理
波的叠加原理是物理学的基本原理之一。介质中同时存在几列波时,每列波能保持各自的传播规律而不互相干扰。在波的重叠区域里各点的振动的物理量等于各列波在该点引起的物理量的矢量和。在两列波重叠的区域里,任何一个质点同时参与两个振动,其振动位移等于这两列波分别引起的位移的矢量和,当两列波振动方向在同一直线上时,这两个位移的矢量和在选定正方向后可简化为代数和。
波的叠加原理是物理学的基本原理之一。介质中同时存在几列波时,每列波能保持各自的传播规律而不互相干扰。在波的重叠区域里各点的振动的物理量等于各列波在该点引起的物理量的矢量和。在两列波重叠的区域里,任何一个质点同时参与两个振动,其振动位移等于这两列波分别引起的位移的矢量和,当两列波振动方向在同一直线上时,这两个位移的矢量和在选定正方向后可简化为代数和。
注意:只有当波的强度较小,波动方程变现为线性方程时,波的叠加原理才普遍成立。
波是指振动的传播。电磁振动的传播是电磁波。为直观起见,以绳子抖动这种最简单的为例,在绳子的一端有一个上下振动的振源,振动沿绳向前传播。从整体看波峰和波谷不断向前运动,而绳子的质点只做上下运动并没有向前运动。
波动是物质运动的重要形式,广泛存在于自然界。被传递的物理量扰动或振动有多种形式,机械振动的传递构成机械波,电磁场振动的传递构成电磁波(包括光波),温度变化的传递构成温度波(见液态氦),晶体点阵振动的传递构成点阵波(见点阵动力学),自旋磁矩的扰动在铁磁体内传播时形成自旋波(见固体物理学),实际上任何一个宏观的或微观的物理量所受扰动在空间传递时都可形成波。最常见的机械波是构成介质的质点的机械运动(引起位移、密度、压强等物理量的变化)在空间的传播过程,例如弦线中的波、水面波、空气或固体中的声波等。产生这些波的前提是介质的相邻质点间存在弹性力或准弹性力的相互作用,正是借助于这种相互作用力才使某一点的振动传递给邻近质点,故这些波亦称弹性波。振动物理量可以是标量,相应的波称为标量波(如空气中的声波),也可以是矢量,相应的波称为矢量波(如电磁波)。振动方向与波的传播方向一致的称纵波,相垂直的称为横波。
各种形式的波的共同特征是具有周期性。受扰动物理量变化时具有时间周期性,即同一点的物理量在经过一个周期后完全恢复为原来的值;在空间传递时又具有空间周期性,即沿波的传播方向经过某一空间距离后会出现同一振动状态(例如质点的位移和速度)。因此,受扰动物理量u既是时间t,又是空间位置r的周期函数,函数u(t,r)称为波函数或波动表示式,是定量描述波动过程的数学表达式。广义地说,凡是描述运动状态的函数具有时间周期性和空间周期性特征的都可称为波,如引力波,微观粒子的概率波(见波粒二象性)等。
各种波的共同特性还有:①在不同介质的界面上能产生反射和折射,对各向同性介质的界面,遵守反射定律和折射定律(见反射定律、折射定律);②通常的线性波叠加时遵守波的叠加原理(见光的独立传播原理);③两束或两束以上的波在一定条件下叠加时能产生干涉现象(见光的干涉);④波在传播路径上遇到障碍物时能产生衍射现象(见光的衍射);⑤横波能产生偏振现象(见光学偏振现象)。
波的形式是多种多样的。它赖以传播的空间可以是充满物质的,也可以是真空(对电磁波而言)。有些形式的波能为人们的感官所感觉,有些却不能。人们最熟悉的是水面波,它有几种类型。例如,在深水的表面,有主要以重力为恢复力的表面波,典型波长为1m到100m;有主要以表面张力为恢复力的涟波,波长约短于0.07m。这两种波常具有正弦形状。在深水内部则有内重力波,出现在海洋内有密度分层的区域。不只在海洋里,在大气层里,也可以出现内重力波。空气中更广泛遇到的,当然是声波。声波中传播的是空气中压强、密度等物理量的扰动,扰动指对无声波时原有值的偏离。
固体里不断发生着波动。从大的实物讲,如地球上经常出现地震波;从小的实物讲,如晶体的原子点阵间无时不在传动的点阵波。对具有特殊物理性质的固体材料,还可以激发一些特殊的波:如在压电材料里可有电声表面波;在铁磁材料里可有自旋波、磁弹波等。在等离子体里也可以激发一些不同类型的波。在地球的电离层内,由于随流体运动的磁感线对流体施加磁压,并由于流体压能够自动调整以平衡变化着的磁压,于是可以激发沿着磁感线传播的一种磁声波。这只是等离子体内可以产生的许多类型波之一。