php爬虫记录怎么用,pyhton怎么自学?
py主要用途是爬虫、反爬虫、解析数据、量化模型等,常见大厂、游戏网络公司。
小白学习主要是系统教学视频内容,跟着操作,找不到就需要买,或者上培训班,大量码农生产代工厂。[我想静静][我想静静][我想静静]
编程语言累,入门接触是会艰涩难懂,比较好入门语言PHP,语法类似英文,比较好上手。
会简单编程时候,可以到公司实习,多积累操作才会慢慢成长。
当然,这些都是一个过程,贵在坚持还有看个人学习能力。
加油⛽️。
用爬虫技术能做到哪些有趣的事情?
看到这个问题必须来怒答一波~用python爬虫爬便宜机票了解一下?
喜欢旅行又怕吃土?让Python来爬取最便宜机票吧!图源:
videoblocks.com
你喜欢旅行吗?
这个问题通常会得到一个肯定的答案,随后引出一两个有关之前冒险经历的故事。大多数人都认为旅行是体验新文化和开阔视野的好方法。但如果问题是“你喜欢搜索机票的过程吗?”也许话题就到此为止了……
可事实上,便宜的机票往往也很重要!本文将尝试构建一个网络爬虫,该爬虫对特定目的地运行并执行带有浮动日期(首选日期前后最多三天)的航班价格搜索。它会将结果保存为excel文件并发送一封包含快速统计信息的电子邮件。显然,这个爬虫的目的就是帮助我们找到最优惠的价格!
你可以在服务器上运行脚本(一个简单的Raspberry Pi就可以),每天运行一到两次。结果会以邮件形式发送,建议将excel文件存入Dropbox文件夹,以便随时随地查看。
因为爬虫以“浮动日期”进行搜索,所以它会搜索首选日期前后最多三天的航班信息。尽管该脚本一次仅运行一对目的地,但可以很容易地改写该爬虫使其每个循环运行多个目的地。最终甚至可能找到一些错误票价...那会很有意思!
另一个爬虫某种意义上来讲,网络爬取是互联网“工作”的核心。
也许你认为这是一个十分大胆的说法,但谷歌就是从拉里·佩奇用Java和Python构建的网络爬虫开始的。爬虫不断地爬取信息,整个互联网都在试图为所有问题提供最佳的可能答案。网络爬取有不计其数的应用程序,即使更喜欢数据科学中的其他分支,你仍需要一些爬取技巧以获得数据。
这里用到的一些技术来自于最近新的一本佳作《Python网络数据采集》,书中包含与网络爬取相关的所有内容,并提供了大量简例和实例。甚至有一个特别有意思的章节,讲述如何解决验证码检验的问题。
Python的拯救第一个挑战就是选择爬取信息的平台,本文选择了客涯(Kayak)。我们试过了Momondo, 天巡(Skyscanner), 亿客行(Expedia)和其它一些网站,但是这些网站上的验证码特别变态。
在那些“你是人类吗?”的验证中,尝试了多次选择交通灯、十字路口和自行车后,客涯似乎是最好的选择,尽管短时间内加载太多页面它会跳出安全检查。
我们设法让机器人每4到6个小时查询一次网站,结果一切正常。虽然说不定哪个部分偶尔会出点小问题,但是如果收到验证码,既可以手动解决问题后启动机器人,也可以等待几小时后的自动重启。
如果你是网络爬取新手,或者不知道为何有些网站花费很大力气阻止网络爬取,那么为构建爬虫写下第一行代码前,你一定要多加努力。
谷歌的“网络爬取规范”:
http://lmgtfy.com/?q=web+scraping+etiquette
系紧安全带...导入并打开Chrome浏览器标签页后,会定义一些循环中会用到的函数。这个架构的构思大概是这样的:
· 一个函数用于启动机器人程序,表明想要搜索的城市和日期。
· 这个函数获得首轮搜索结果,按“最佳”航班排序,然后点击“加载更多结果”。
· 另一个函数会爬取整个页面,并返回一个dataframe数据表。
· 随后重复步骤2和步骤3,得出按“价格”和“航行时间”排序的结果。
· 发送一封简要价格(最低价和平均价)的邮件,并将带有这三种排序类型的dataframe数据表保存为一份excel文件。
· 以上所有步骤会在循环中重复,每X小时运行一次。
每个Selenium项目都以一个网页驱动器开始。我们使用Chromedriver驱动器,但还有其它选择。PhantomJS和Firefox也很受欢迎。下载Chromedriver后,将其置于一个文件夹中即可。第一行代码会打开一个空白Chrome标签页。
from time import sleep, strftime
from random import randint
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import smtplib
from email.mime.multipart import MIMEMultipart
# Change this to your own chromedriver path!
chromedriver_path = 'C:/{YOUR PATH HERE}/chromedriver_win32/chromedriver.exe'
driver = webdriver.Chrome(executable_path=chromedriver_path) # This will open the Chrome window
sleep(2)
这些是将用于整个项目的包。使用randint函数令机器人在每次搜索之间随机睡眠几秒钟。这对任何一个机器人来说都是必要属性。如果运行前面的代码,应该打开一个Chrome浏览器窗口,机器人会在其中导航。
一起来做一个快速测试:在另一个窗口上访问客涯网(http://kayak.com),选择往返城市和日期。选择日期时,确保选择的是“+-3天”。由于在编写代码时考虑到了结果页面,所以如果只想搜索特定日期,很可能需要做一些微小的调整。
点击搜索按钮在地址栏获取链接。它应该类似于下面所使用的链接,将变量kayak定义为url,并从网页驱动器执行get方法,搜索结果就会出现。
无论何时,只要在几分钟内使用get命令超过两到三次,就会出现验证码。实际上可以自己解决验证码,并在下一次验证出现时继续进行想要的测试。从测试来看,第一次搜索似乎一直没有问题,所以如果想运行这份代码,并让它在较长的时间间隔后运行,必须解决这个难题。你并不需要十分钟就更新一次这些价格,对吧?
每个XPath都有陷阱到目前为止,已经打开了一个窗口,获取了一个网站。为了开始获取价格和其他信息,需要使用XPath或CSS选择器,我们选择了XPath。使用XPath导航网页可能会令人感到困惑,即使使用从inspector视图中直接使用“复制XPath”,但这不是获得所需元素的最佳方法。有时通过“复制XPath”这个方法获得的链接过于针对特定对象,以至于很快就失效了。《Python网络数据采集》一书很好地解释了使用XPath和CSS选择器导航的基础知识。
接下来,用Python选择最便宜的结果。上面代码中的红色文本是XPath选择器,在网页上任意一处右键单击选择“inspect”就可以看到它。在想要查看代码的位置,可以再次右键单击选择“inspect”。
为说明之前所观察到的从“inspector”复制路径的缺陷,请参考以下差异:
1 # This is what the copymethod would return. Right click highlighted rows on the right side and select “copy> Copy XPath”//*[@id=“wtKI-price_aTab”]/div[1]/div/div/div[1]/div/span/span
2 # This is what I used todefine the “Cheapest” buttoncheap_results= ‘//a[@data-code = “price”]’
第二种方法的简洁性清晰可见。它搜索具有data-code等于price属性的元素a。第一种方法查找id等于wtKI-price_aTab的元素,并遵循第一个div元素和另外四个div和两个span。这次……会成功的。现在就可以告诉你,id元素会在下次加载页面时更改。每次页面一加载,字母wtKI会动态改变,所以只要页面重新加载,代码就会失效。花些时间阅读XPath,保证你会有收获。
不过,使用复制的方法在不那么“复杂”的网站上工作,也是很好的!
基于以上所展示的内容,如果想在一个列表中以几个字符串的形式获得所有搜索结果该怎么办呢?其实很简单。每个结果都在一个对象中,这个对象的类是“resultWrapper”。获取所有结果可以通过像下面这样的for循环语句来实现。如果你能理解这一部分,应该可以理解接下来的大部分代码。它基本上指向想要的结果(结果包装器),使用某种方式(XPath)获得文本,并将其放置在可读对象中(首先使用flight_containers,然后使用flight_list)。
前三行已展示在图中,并且可以清楚地看到所需的内容,但是有获得信息的更优选择,需要逐一爬取每个元素。
准备起飞吧!最容易编写的函数就是加载更多结果的函数,所以代码由此开始。为了在不触发安全验证的前提下最大化所获取的航班数量,每次页面显示后,单击“加载更多结果”。唯一的新内容就是所添加的try语句,因为有时按钮加载会出错。如果它对你也有用,只需在前面展示的start_kayak函数中进行简要注释。
# Load more results to maximize the scraping
def load_more():
try:
more_results = '//a[@class = “moreButton”]'
driver.find_element_by_xpath(more_results).click()
# Printing these notes during the program helps me quickly check what it is doing
print('sleeping…..')
sleep(randint(45,60))
except:
pass
现在,经过这么长的介绍,已经准备好定义实际爬取页面的函数。
我们编译了下一个函数page_scrape中的大部分元素。有时这些元素会返回列表插入去程信息和返程信息之间。这里使用了一个简单的办法分开它们,比如在第一个 section_a_list和section_b_list变量中,该函数还返回一个flight_df数据表。所以可以分离在不同分类下得到的结果,之后再把它们合并起来。
def page_scrape():
“““This function takes care of the scraping part”““
xp_sections = '//*[@class=“section duration”]'
sections = driver.find_elements_by_xpath(xp_sections)
sections_list = [value.text for value in sections]
section_a_list = sections_list[::2] # This is to separate the two flights
section_b_list = sections_list[1::2] # This is to separate the two flights
# if you run into a reCaptcha, you might want to do something about it
# you will know there's a problem if the lists above are empty
# this if statement lets you exit the bot or do something else
# you can add a sleep here, to let you solve the captcha and continue scraping
# i'm using a SystemExit because i want to test everything from the start
if section_a_list == []:
raise SystemExit
# I'll use the letter A for the outbound flight and B for the inbound
a_duration = []
a_section_names = []
for n in section_a_list:
# Separate the time from the cities
a_section_names.append(''.join(n.split()[2:5]))
a_duration.append(''.join(n.split()[0:2]))
b_duration = []
b_section_names = []
for n in section_b_list:
# Separate the time from the cities
b_section_names.append(''.join(n.split()[2:5]))
b_duration.append(''.join(n.split()[0:2]))
xp_dates = '//div[@class=“section date”]'
dates = driver.find_elements_by_xpath(xp_dates)
dates_list = [value.text for value in dates]
a_date_list = dates_list[::2]
b_date_list = dates_list[1::2]
# Separating the weekday from the day
a_day = [value.split()[0] for value in a_date_list]
a_weekday = [value.split()[1] for value in a_date_list]
b_day = [value.split()[0] for value in b_date_list]
b_weekday = [value.split()[1] for value in b_date_list]
# getting the prices
xp_prices = '//a[@class=“booking-link”]/span[@class=“price option-text”]'
prices = driver.find_elements_by_xpath(xp_prices)
prices_list = [price.text.replace('$','') for price in prices if price.text != '']
prices_list = list(map(int, prices_list))
# the stops are a big list with one leg on the even index and second leg on odd index
xp_stops = '//div[@class=“section stops”]/div[1]'
stops = driver.find_elements_by_xpath(xp_stops)
stops_list = [stop.text[0].replace('n','0') for stop in stops]
a_stop_list = stops_list[::2]
b_stop_list = stops_list[1::2]
xp_stops_cities = '//div[@class=“section stops”]/div[2]'
stops_cities = driver.find_elements_by_xpath(xp_stops_cities)
stops_cities_list = [stop.text for stop in stops_cities]
a_stop_name_list = stops_cities_list[::2]
b_stop_name_list = stops_cities_list[1::2]
# this part gets me the airline company and the departure and arrival times, for both legs
xp_schedule = '//div[@class=“section times”]'
schedules = driver.find_elements_by_xpath(xp_schedule)
hours_list = []
carrier_list = []
for schedule in schedules:
hours_list.append(schedule.text.split('\n')[0])
carrier_list.append(schedule.text.split('\n')[1])
# split the hours and carriers, between a and b legs
a_hours = hours_list[::2]
a_carrier = carrier_list[1::2]
b_hours = hours_list[::2]
b_carrier = carrier_list[1::2]
cols = (['Out Day', 'Out Time', 'Out Weekday', 'Out Airline', 'Out Cities', 'Out Duration', 'Out Stops', 'Out Stop Cities',
'Return Day', 'Return Time', 'Return Weekday', 'Return Airline', 'Return Cities', 'Return Duration', 'Return Stops', 'Return Stop Cities',
'Price'])
flights_df = pd.DataFrame({'Out Day': a_day,
'Out Weekday': a_weekday,
'Out Duration': a_duration,
'Out Cities': a_section_names,
'Return Day': b_day,
'Return Weekday': b_weekday,
'Return Duration': b_duration,
'Return Cities': b_section_names,
'Out Stops': a_stop_list,
'Out Stop Cities': a_stop_name_list,
'Return Stops': b_stop_list,
'Return Stop Cities': b_stop_name_list,
'Out Time': a_hours,
'Out Airline': a_carrier,
'Return Time': b_hours,
'Return Airline': b_carrier,
'Price': prices_list})[cols]
flights_df['timestamp'] = strftime(“%Y%m%d-%H%M”) # so we can know when it was scraped
return flights_df
尽量让这些名字容易理解。记住变量a表示旅行的去程信息,变量b表示旅行的返程信息。接下来说说下一个函数。
等等,还有什么吗?截至目前,已经有了一个能加载更多结果的函数和一个能爬取其他结果的函数。本可以在此结束这篇文章,而你可以自行手动使用这些函数,并在浏览的页面上使用爬取功能。但是前文提到给自己发送邮件和一些其他信息的内容,这都包含在接下来的函数start_kayak中。
它要求填入城市名和日期,并由此打开一个kayak字符串中的地址,该字符串直接跳转到“最佳”航班结果排序页面。第一次爬取后,可以获取价格的顶部矩阵,这个矩阵将用于计算平均值和最小值,之后和客涯(Kayak)的预测结果(页面左上角)一同发送到邮件中。这是单一日期搜索时可能导致错误的原因之一,因其不包含矩阵元素。
def start_kayak(city_from, city_to, date_start, date_end):
“““City codes it's the IATA codes!
Date format YYYY-MM-DD”““
kayak = ('https://www.kayak.com/flights/' + city_from + '-' + city_to +
'/' + date_start + '-flexible/' + date_end + '-flexible?sort=bestflight_a')
driver.get(kayak)
sleep(randint(8,10))
# sometimes a popup shows up, so we can use a try statement to check it and close
try:
xp_popup_close = '//button[contains(@id,”dialog-close”) and contains(@class,”Button-No-Standard-Style close “)]'
driver.find_elements_by_xpath(xp_popup_close)[5].click()
except Exception as e:
pass
sleep(randint(60,95))
print('loading more.....')
# load_more()
print('starting first scrape.....')
df_flights_best = page_scrape()
df_flights_best['sort'] = 'best'
sleep(randint(60,80))
# Let's also get the lowest prices from the matrix on top
matrix = driver.find_elements_by_xpath('//*[contains(@id,”FlexMatrixCell”)]')
matrix_prices = [price.text.replace('$','') for price in matrix]
matrix_prices = list(map(int, matrix_prices))
matrix_min = min(matrix_prices)
matrix_avg = sum(matrix_prices)/len(matrix_prices)
print('switching to cheapest results…..')
cheap_results = '//a[@data-code = “price”]'
driver.find_element_by_xpath(cheap_results).click()
sleep(randint(60,90))
print('loading more…..')
# load_more()
print('starting second scrape…..')
df_flights_cheap = page_scrape()
df_flights_cheap['sort'] = 'cheap'
sleep(randint(60,80))
print('switching to quickest results…..')
quick_results = '//a[@data-code = “duration”]'
driver.find_element_by_xpath(quick_results).click()
sleep(randint(60,90))
print('loading more…..')
# load_more()
print('starting third scrape…..')
df_flights_fast = page_scrape()
df_flights_fast['sort'] = 'fast'
sleep(randint(60,80))
# saving a new dataframe as an excel file. the name is custom made to your cities and dates
final_df = df_flights_cheap.append(df_flights_best).append(df_flights_fast)
final_df.to_excel('search_backups//{}_flights_{}-{}_from_{}_to_{}.xlsx'.format(strftime(“%Y%m%d-%H%M”),
city_from, city_to,
date_start, date_end), index=False)
print('saved df…..')
# We can keep track of what they predict and how it actually turns out!
xp_loading = '//div[contains(@id,”advice”)]'
loading = driver.find_element_by_xpath(xp_loading).text
xp_prediction = '//span[@class=“info-text”]'
prediction = driver.find_element_by_xpath(xp_prediction).text
print(loading+'\n'+prediction)
# sometimes we get this string in the loading variable, which will conflict with the email we send later
# just change it to “Not Sure” if it happens
weird = '¯\\_(ツ)_/¯'
if loading == weird:
loading = 'Not sure'
username = 'YOUREMAIL@hotmail.com'
password = 'YOUR PASSWORD'
server = smtplib.SMTP('smtp.outlook.com', 587)
server.ehlo()
server.starttls()
server.login(username, password)
msg = ('Subject: Flight Scraper\n\n\
Cheapest Flight: {}\nAverage Price: {}\n\nRecommendation: {}\n\nEnd of message'.format(matrix_min, matrix_avg, (loading+'\n'+prediction)))
message = MIMEMultipart()
message['From'] = 'YOUREMAIL@hotmail.com'
message['to'] = 'YOUROTHEREMAIL@domain.com'
server.sendmail('YOUREMAIL@hotmail.com', 'YOUROTHEREMAIL@domain.com', msg)
print('sent email…..')
虽然没有使用Gmail账户测试发送邮件,但是可以搜索到很多的替代方法,前文提到的那本书中也有其他方法来实现这一点。如果已有一个Hotmail账户,只要替换掉个人的详细信息,它就会开始工作了。
如果想探索脚本的某一部分正在做什么,可以将脚本复制下来并在函数外使用它。这是彻底理解它的唯一方法。
利用刚才创造的一切在这些步骤之后,还可以想出一个简单的循环来使用刚创造的函数,同时使其持续运行。完成四个“花式”提示,写下城市和日期(输入)。因为测试时不想每次都输入这些变量,需要的时候可以使用以下这个清楚的方式进行替换。
如果已经做到了这一步,恭喜你!改进还有很多,比如与Twilio集成,发送文本消息而不是邮件。也可以使用VP*或更加难懂的方式同时从多个服务器上研究搜索结果。还有就是验证码的问题,验证码会时不时地跳出来,但对此类问题还是有解决办法的。不过,能走到这里已经是有很牢固的基础了,你可以尝试添加一些额外的要素。
使用脚本运行测试的示例
留言 点赞 关注
我们一起分享AI学习与发展的干货
欢迎关注全平台AI垂类自媒体 “读芯术”
现在学习python如何?
python就业路径
在说就业情况之前,我们先来了解一下Python的职业发展路径和可应用的领域有那哪些,再针对这些领域逐条聊聊就业情况:
基础阶段:这个阶段就是Python的核心编程,在市场上还不是很容易找到工作的Web阶段:这个阶段前端、Web框架、网络编程、数据库的相关知识点。如果全部都可以掌握的话,基本上薪资在8k到20k左右爬虫阶段:此阶段是web和数据采集,基本上薪资在10k-25k左右机器学习阶段:数据挖掘、算法等;薪资在15k-25k左右;Python往年就业盘点以及未来趋势自动化运维是被Python“占领”的一个新的热点和就业方向,随着技术和时代的发展,Python还会占领更多的热门就业方向。运维工具的话,可以找一些比较成熟的第三方开源,方便集成的运维工具,比如监控服务器的CPU,内存占用的工具,最好是Python做的工具等等,在这里这些就不多说了。
Python专业的学习路径根据上述职业发展给大家汇总一下学习重点:
如果职业发展是Web工程师的话:上述学习路线要学习的知识点是,python基础,python高级,前端开发,web开发。
如果职业发展是爬虫工程师的话:上述学习路线要学习的知识点是,包括上述知识点另外加上爬虫开发。
未来职业发展是数据方面的工作:所需要获取的知识点包括上述全部知识点外另加上自动化运维和数据挖掘;
未来职业发展是人工资还能相关:那么所需要获取的知识点是上图中全部内容。
一下:根据路线图,可以找到相关知识点的配套视频和笔记。如果找不到可以私信我来领。建议零基础的话,视频入门为主,书籍找一本教材类的书籍。里面含有python相关的大小各类项目。作为入门后项目衔接,并且可以查漏补缺的工具书。
用半年的时间来开发一个新网站?
首先,先自动屏蔽题主的时间(半年。。。),然后回答楼主的问题,如果必须二选一,那么我建议选择PHP语言!再说这个时间的问题,半年也就是6个月,如果你需要6个月来开发一个网站,那是不应该的。
开发新网站,用PHP还是用Python呢?用PHP!
虽然大多数人都拿“PHP是世界上最好的编程语言”来戏谑PHP这门语言,但不可否认的是PHP在网站web开发中的占比依旧是最大。大到什么程度呢?
W3Techs是一个专门调查统计web技术的网站,打开W3Techs的官网(www.w3techs.com)可以看到截至2020年5月全球web开发服务端语言占比最新的统计:
其中PHP已79.0%的占比遥遥领先!哪里还有什么python的影子呢?
我一个从事Java研发的都没说话好不好?
那些你知道的用PHP开发的网站一个大型的应用网站往往不止一门服务端语言,各种语言混合交错,配合使用是很正常的事情。这里简单列举几个曾经或现在依旧在使用PHP语言的网站(或公司):
FaceBook新浪微博微信公众号百度淘宝唯品会哔哩哔哩作业帮无数中、小、微公司(例如:我司)。。。就说这些够不够?够不够说服你使用PHP来开发网站?
PHP开发网站就一个字:快!先不要考虑性能的事情,牛逼的程序员自带优越的性能!而不用去关心使用的是什么语言~
那些你知道的用python开发的网站python很厉害,作为脚本语言,应该是运维同学的最爱,或者爬虫(python大神别喷我)。这里简单说一下我知道的用python开发的网站:
知乎豆瓣谷歌的Gmail谷歌的GMaps欢迎大家继续补充!
6个月开发一个网站?不能时间这么长的,有几个缺点:
研发成本高;时间长意味着功能多,功能多意味着复杂度高,容易难产;跟不上市场的节奏;应该要做好功能规划,先上一个基础版的网站,拥有最核心的功能即可,然后逐步迭代,同时根据用户的使用情况、使用反馈等来不断优化网站体验方为上策。
万一第一版上去就死了呢?是不是可以将成本降到最低,你要是研发半年才开放给用户,那用户要是不买账,你的投入成本就太大了。
以上抛砖引玉,欢迎大家拍砖交流~
觉得有收获的,欢迎点赞、关注!
数据采集人员主要职责是什么?
这个跟具体的工作内容有关,要看哪个行业的,比如一个普通的招聘需求:;数据采集工程师岗位职责;岗位职责:;
1. 负责数据采集程序的编写、调试、运行;
2. 负责分布式程序的部署、优化、维护;
3. 负责所需数据的整理、清洗、入库;
4. 针对不同网站的反爬虫技术提出有效的应对策略;任职要求:;1.本科以上学历,一年以上工作经验,能力突出者可适当放宽;2.熟练python,熟练使用多线程/多协程,熟练使用headless浏览器开发;3.熟悉php,ruby,node等脚本编程语言,熟练使用各种数据库操作;4.熟悉基础前端知识,熟练使用xpath对html进行结构化提取,不限于使用lxml,beautifulsoup;
5.性格随和,善于表达沟通,团队协作;
6.抗压能力强,能保质保量的高效完成指定工作;
7.较强的自主学习能力,能阅读相关英文文档;
8.有后台接口开发、前端页面开发相关经验者有加分,github有个人项目者有加分