首页 开发编程 正文

php定时怎么实现的

看到这个问题必须来怒答一波~用python爬虫爬便宜机票了解一下?该爬虫对特定目的地运行并执行带有浮动日期(首选日期前后最多三天)的航班价格搜索,它会将结果保存为excel文件并发送一封包含快速统计信息的电子邮件。...

php定时怎么实现的,用爬虫技术能做到哪些有趣的事情?

看到这个问题必须来怒答一波~用python爬虫爬便宜机票了解一下?

喜欢旅行又怕吃土?让Python来爬取最便宜机票吧!

图源:

videoblocks.com

你喜欢旅行吗?

这个问题通常会得到一个肯定的答案,随后引出一两个有关之前冒险经历的故事。大多数人都认为旅行是体验新文化和开阔视野的好方法。但如果问题是“你喜欢搜索机票的过程吗?”也许话题就到此为止了……

可事实上,便宜的机票往往也很重要!本文将尝试构建一个网络爬虫,该爬虫对特定目的地运行并执行带有浮动日期(首选日期前后最多三天)的航班价格搜索。它会将结果保存为excel文件并发送一封包含快速统计信息的电子邮件。显然,这个爬虫的目的就是帮助我们找到最优惠的价格!

你可以在服务器上运行脚本(一个简单的Raspberry Pi就可以),每天运行一到两次。结果会以邮件形式发送,建议将excel文件存入Dropbox文件夹,以便随时随地查看。

因为爬虫以“浮动日期”进行搜索,所以它会搜索首选日期前后最多三天的航班信息。尽管该脚本一次仅运行一对目的地,但可以很容易地改写该爬虫使其每个循环运行多个目的地。最终甚至可能找到一些错误票价...那会很有意思!

另一个爬虫

某种意义上来讲,网络爬取是互联网“工作”的核心。

也许你认为这是一个十分大胆的说法,但谷歌就是从拉里·佩奇用Java和Python构建的网络爬虫开始的。爬虫不断地爬取信息,整个互联网都在试图为所有问题提供最佳的可能答案。网络爬取有不计其数的应用程序,即使更喜欢数据科学中的其他分支,你仍需要一些爬取技巧以获得数据。

这里用到的一些技术来自于最近新的一本佳作《Python网络数据采集》,书中包含与网络爬取相关的所有内容,并提供了大量简例和实例。甚至有一个特别有意思的章节,讲述如何解决验证码检验的问题。

Python的拯救

第一个挑战就是选择爬取信息的平台,本文选择了客涯(Kayak)。我们试过了Momondo, 天巡(Skyscanner), 亿客行(Expedia)和其它一些网站,但是这些网站上的验证码特别变态。

在那些“你是人类吗?”的验证中,尝试了多次选择交通灯、十字路口和自行车后,客涯似乎是最好的选择,尽管短时间内加载太多页面它会跳出安全检查。

我们设法让机器人每4到6个小时查询一次网站,结果一切正常。虽然说不定哪个部分偶尔会出点小问题,但是如果收到验证码,既可以手动解决问题后启动机器人,也可以等待几小时后的自动重启。

如果你是网络爬取新手,或者不知道为何有些网站花费很大力气阻止网络爬取,那么为构建爬虫写下第一行代码前,你一定要多加努力。

谷歌的“网络爬取规范”:

http://lmgtfy.com/?q=web+scraping+etiquette

系紧安全带...

导入并打开Chrome浏览器标签页后,会定义一些循环中会用到的函数。这个架构的构思大概是这样的:

· 一个函数用于启动机器人程序,表明想要搜索的城市和日期。

· 这个函数获得首轮搜索结果,按“最佳”航班排序,然后点击“加载更多结果”。

· 另一个函数会爬取整个页面,并返回一个dataframe数据表。

· 随后重复步骤2和步骤3,得出按“价格”和“航行时间”排序的结果。

· 发送一封简要总结价格(最低价和平均价)的邮件,并将带有这三种排序类型的dataframe数据表保存为一份excel文件。

· 以上所有步骤会在循环中重复,每X小时运行一次。

每个Selenium项目都以一个网页驱动器开始。我们使用Chromedriver驱动器,但还有其它选择。PhantomJS和Firefox也很受欢迎。下载Chromedriver后,将其置于一个文件夹中即可。第一行代码会打开一个空白Chrome标签页。

from time import sleep, strftime

from random import randint

import pandas as pd

from selenium import webdriver

from selenium.webdriver.common.keys import Keys

import smtplib

from email.mime.multipart import MIMEMultipart

# Change this to your own chromedriver path!

chromedriver_path = 'C:/{YOUR PATH HERE}/chromedriver_win32/chromedriver.exe'

driver = webdriver.Chrome(executable_path=chromedriver_path) # This will open the Chrome window

sleep(2)

这些是将用于整个项目的包。使用randint函数令机器人在每次搜索之间随机睡眠几秒钟。这对任何一个机器人来说都是必要属性。如果运行前面的代码,应该打开一个Chrome浏览器窗口,机器人会在其中导航。

一起来做一个快速测试:在另一个窗口上访问客涯网(http://kayak.com),选择往返城市和日期。选择日期时,确保选择的是“+-3天”。由于在编写代码时考虑到了结果页面,所以如果只想搜索特定日期,很可能需要做一些微小的调整。

点击搜索按钮在地址栏获取链接。它应该类似于下面所使用的链接,将变量kayak定义为url,并从网页驱动器执行get方法,搜索结果就会出现。

无论何时,只要在几分钟内使用get命令超过两到三次,就会出现验证码。实际上可以自己解决验证码,并在下一次验证出现时继续进行想要的测试。从测试来看,第一次搜索似乎一直没有问题,所以如果想运行这份代码,并让它在较长的时间间隔后运行,必须解决这个难题。你并不需要十分钟就更新一次这些价格,对吧?

每个XPath都有陷阱

到目前为止,已经打开了一个窗口,获取了一个网站。为了开始获取价格和其他信息,需要使用XPath或CSS选择器,我们选择了XPath。使用XPath导航网页可能会令人感到困惑,即使使用从inspector视图中直接使用“复制XPath”,但这不是获得所需元素的最佳方法。有时通过“复制XPath”这个方法获得的链接过于针对特定对象,以至于很快就失效了。《Python网络数据采集》一书很好地解释了使用XPath和CSS选择器导航的基础知识。

接下来,用Python选择最便宜的结果。上面代码中的红色文本是XPath选择器,在网页上任意一处右键单击选择“inspect”就可以看到它。在想要查看代码的位置,可以再次右键单击选择“inspect”。

为说明之前所观察到的从“inspector”复制路径的缺陷,请参考以下差异:

1 # This is what the copymethod would return. Right click highlighted rows on the right side and select “copy> Copy XPath”//*[@id=“wtKI-price_aTab”]/div[1]/div/div/div[1]/div/span/span

2 # This is what I used todefine the “Cheapest” buttoncheap_results= ‘//a[@data-code = “price”]’

第二种方法的简洁性清晰可见。它搜索具有data-code等于price属性的元素a。第一种方法查找id等于wtKI-price_aTab的元素,并遵循第一个div元素和另外四个div和两个span。这次……会成功的。现在就可以告诉你,id元素会在下次加载页面时更改。每次页面一加载,字母wtKI会动态改变,所以只要页面重新加载,代码就会失效。花些时间阅读XPath,保证你会有收获。

不过,使用复制的方法在不那么“复杂”的网站上工作,也是很好的!

基于以上所展示的内容,如果想在一个列表中以几个字符串的形式获得所有搜索结果该怎么办呢?其实很简单。每个结果都在一个对象中,这个对象的类是“resultWrapper”。获取所有结果可以通过像下面这样的for循环语句来实现。如果你能理解这一部分,应该可以理解接下来的大部分代码。它基本上指向想要的结果(结果包装器),使用某种方式(XPath)获得文本,并将其放置在可读对象中(首先使用flight_containers,然后使用flight_list)。

前三行已展示在图中,并且可以清楚地看到所需的内容,但是有获得信息的更优选择,需要逐一爬取每个元素。

准备起飞吧!

最容易编写的函数就是加载更多结果的函数,所以代码由此开始。为了在不触发安全验证的前提下最大化所获取的航班数量,每次页面显示后,单击“加载更多结果”。唯一的新内容就是所添加的try语句,因为有时按钮加载会出错。如果它对你也有用,只需在前面展示的start_kayak函数中进行简要注释。

# Load more results to maximize the scraping

def load_more():

try:

more_results = '//a[@class = “moreButton”]'

driver.find_element_by_xpath(more_results).click()

# Printing these notes during the program helps me quickly check what it is doing

print('sleeping…..')

sleep(randint(45,60))

except:

pass

现在,经过这么长的介绍,已经准备好定义实际爬取页面的函数。

我们编译了下一个函数page_scrape中的大部分元素。有时这些元素会返回列表插入去程信息和返程信息之间。这里使用了一个简单的办法分开它们,比如在第一个 section_a_list和section_b_list变量中,该函数还返回一个flight_df数据表。所以可以分离在不同分类下得到的结果,之后再把它们合并起来。

def page_scrape():

“““This function takes care of the scraping part”““

xp_sections = '//*[@class=“section duration”]'

sections = driver.find_elements_by_xpath(xp_sections)

sections_list = [value.text for value in sections]

section_a_list = sections_list[::2] # This is to separate the two flights

section_b_list = sections_list[1::2] # This is to separate the two flights

# if you run into a reCaptcha, you might want to do something about it

# you will know there's a problem if the lists above are empty

# this if statement lets you exit the bot or do something else

# you can add a sleep here, to let you solve the captcha and continue scraping

# i'm using a SystemExit because i want to test everything from the start

if section_a_list == []:

raise SystemExit

# I'll use the letter A for the outbound flight and B for the inbound

a_duration = []

a_section_names = []

for n in section_a_list:

# Separate the time from the cities

a_section_names.append(''.join(n.split()[2:5]))

a_duration.append(''.join(n.split()[0:2]))

b_duration = []

b_section_names = []

for n in section_b_list:

# Separate the time from the cities

b_section_names.append(''.join(n.split()[2:5]))

b_duration.append(''.join(n.split()[0:2]))

xp_dates = '//div[@class=“section date”]'

dates = driver.find_elements_by_xpath(xp_dates)

dates_list = [value.text for value in dates]

a_date_list = dates_list[::2]

b_date_list = dates_list[1::2]

# Separating the weekday from the day

a_day = [value.split()[0] for value in a_date_list]

a_weekday = [value.split()[1] for value in a_date_list]

b_day = [value.split()[0] for value in b_date_list]

b_weekday = [value.split()[1] for value in b_date_list]

# getting the prices

xp_prices = '//a[@class=“booking-link”]/span[@class=“price option-text”]'

prices = driver.find_elements_by_xpath(xp_prices)

prices_list = [price.text.replace('$','') for price in prices if price.text != '']

prices_list = list(map(int, prices_list))

# the stops are a big list with one leg on the even index and second leg on odd index

xp_stops = '//div[@class=“section stops”]/div[1]'

stops = driver.find_elements_by_xpath(xp_stops)

stops_list = [stop.text[0].replace('n','0') for stop in stops]

a_stop_list = stops_list[::2]

b_stop_list = stops_list[1::2]

xp_stops_cities = '//div[@class=“section stops”]/div[2]'

stops_cities = driver.find_elements_by_xpath(xp_stops_cities)

stops_cities_list = [stop.text for stop in stops_cities]

a_stop_name_list = stops_cities_list[::2]

b_stop_name_list = stops_cities_list[1::2]

# this part gets me the airline company and the departure and arrival times, for both legs

xp_schedule = '//div[@class=“section times”]'

schedules = driver.find_elements_by_xpath(xp_schedule)

hours_list = []

carrier_list = []

for schedule in schedules:

hours_list.append(schedule.text.split('\n')[0])

carrier_list.append(schedule.text.split('\n')[1])

# split the hours and carriers, between a and b legs

a_hours = hours_list[::2]

a_carrier = carrier_list[1::2]

b_hours = hours_list[::2]

b_carrier = carrier_list[1::2]

cols = (['Out Day', 'Out Time', 'Out Weekday', 'Out Airline', 'Out Cities', 'Out Duration', 'Out Stops', 'Out Stop Cities',

'Return Day', 'Return Time', 'Return Weekday', 'Return Airline', 'Return Cities', 'Return Duration', 'Return Stops', 'Return Stop Cities',

'Price'])

flights_df = pd.DataFrame({'Out Day': a_day,

'Out Weekday': a_weekday,

'Out Duration': a_duration,

'Out Cities': a_section_names,

'Return Day': b_day,

'Return Weekday': b_weekday,

'Return Duration': b_duration,

'Return Cities': b_section_names,

'Out Stops': a_stop_list,

'Out Stop Cities': a_stop_name_list,

'Return Stops': b_stop_list,

'Return Stop Cities': b_stop_name_list,

'Out Time': a_hours,

'Out Airline': a_carrier,

'Return Time': b_hours,

'Return Airline': b_carrier,

'Price': prices_list})[cols]

flights_df['timestamp'] = strftime(“%Y%m%d-%H%M”) # so we can know when it was scraped

return flights_df

尽量让这些名字容易理解。记住变量a表示旅行的去程信息,变量b表示旅行的返程信息。接下来说说下一个函数。

等等,还有什么吗?

截至目前,已经有了一个能加载更多结果的函数和一个能爬取其他结果的函数。本可以在此结束这篇文章,而你可以自行手动使用这些函数,并在浏览的页面上使用爬取功能。但是前文提到给自己发送邮件和一些其他信息的内容,这都包含在接下来的函数start_kayak中。

它要求填入城市名和日期,并由此打开一个kayak字符串中的地址,该字符串直接跳转到“最佳”航班结果排序页面。第一次爬取后,可以获取价格的顶部矩阵,这个矩阵将用于计算平均值和最小值,之后和客涯(Kayak)的预测结果(页面左上角)一同发送到邮件中。这是单一日期搜索时可能导致错误的原因之一,因其不包含矩阵元素。

def start_kayak(city_from, city_to, date_start, date_end):

“““City codes it's the IATA codes!

Date format YYYY-MM-DD”““

kayak = ('https://www.kayak.com/flights/' + city_from + '-' + city_to +

'/' + date_start + '-flexible/' + date_end + '-flexible?sort=bestflight_a')

driver.get(kayak)

sleep(randint(8,10))

# sometimes a popup shows up, so we can use a try statement to check it and close

try:

xp_popup_close = '//button[contains(@id,”dialog-close”) and contains(@class,”Button-No-Standard-Style close “)]'

driver.find_elements_by_xpath(xp_popup_close)[5].click()

except Exception as e:

pass

sleep(randint(60,95))

print('loading more.....')

# load_more()

print('starting first scrape.....')

df_flights_best = page_scrape()

df_flights_best['sort'] = 'best'

sleep(randint(60,80))

# Let's also get the lowest prices from the matrix on top

matrix = driver.find_elements_by_xpath('//*[contains(@id,”FlexMatrixCell”)]')

matrix_prices = [price.text.replace('$','') for price in matrix]

matrix_prices = list(map(int, matrix_prices))

matrix_min = min(matrix_prices)

matrix_avg = sum(matrix_prices)/len(matrix_prices)

print('switching to cheapest results…..')

cheap_results = '//a[@data-code = “price”]'

driver.find_element_by_xpath(cheap_results).click()

sleep(randint(60,90))

print('loading more…..')

# load_more()

print('starting second scrape…..')

df_flights_cheap = page_scrape()

df_flights_cheap['sort'] = 'cheap'

sleep(randint(60,80))

print('switching to quickest results…..')

quick_results = '//a[@data-code = “duration”]'

driver.find_element_by_xpath(quick_results).click()

sleep(randint(60,90))

print('loading more…..')

# load_more()

print('starting third scrape…..')

df_flights_fast = page_scrape()

df_flights_fast['sort'] = 'fast'

sleep(randint(60,80))

# saving a new dataframe as an excel file. the name is custom made to your cities and dates

final_df = df_flights_cheap.append(df_flights_best).append(df_flights_fast)

final_df.to_excel('search_backups//{}_flights_{}-{}_from_{}_to_{}.xlsx'.format(strftime(“%Y%m%d-%H%M”),

city_from, city_to,

date_start, date_end), index=False)

print('saved df…..')

# We can keep track of what they predict and how it actually turns out!

xp_loading = '//div[contains(@id,”advice”)]'

loading = driver.find_element_by_xpath(xp_loading).text

xp_prediction = '//span[@class=“info-text”]'

prediction = driver.find_element_by_xpath(xp_prediction).text

print(loading+'\n'+prediction)

# sometimes we get this string in the loading variable, which will conflict with the email we send later

# just change it to “Not Sure” if it happens

weird = '¯\\_(ツ)_/¯'

if loading == weird:

loading = 'Not sure'

username = 'YOUREMAIL@hotmail.com'

password = 'YOUR PASSWORD'

server = smtplib.SMTP('smtp.outlook.com', 587)

server.ehlo()

server.starttls()

server.login(username, password)

msg = ('Subject: Flight Scraper\n\n\

Cheapest Flight: {}\nAverage Price: {}\n\nRecommendation: {}\n\nEnd of message'.format(matrix_min, matrix_avg, (loading+'\n'+prediction)))

message = MIMEMultipart()

message['From'] = 'YOUREMAIL@hotmail.com'

message['to'] = 'YOUROTHEREMAIL@domain.com'

server.sendmail('YOUREMAIL@hotmail.com', 'YOUROTHEREMAIL@domain.com', msg)

print('sent email…..')

虽然没有使用Gmail账户测试发送邮件,但是可以搜索到很多的替代方法,前文提到的那本书中也有其他方法来实现这一点。如果已有一个Hotmail账户,只要替换掉个人的详细信息,它就会开始工作了。

如果想探索脚本的某一部分正在做什么,可以将脚本复制下来并在函数外使用它。这是彻底理解它的唯一方法。

利用刚才创造的一切

在这些步骤之后,还可以想出一个简单的循环来使用刚创造的函数,同时使其持续运行。完成四个“花式”提示,写下城市和日期(输入)。因为测试时不想每次都输入这些变量,需要的时候可以使用以下这个清楚的方式进行替换。

如果已经做到了这一步,恭喜你!改进还有很多,比如与Twilio集成,发送文本消息而不是邮件。也可以使用VP*或更加难懂的方式同时从多个服务器上研究搜索结果。还有就是验证码的问题,验证码会时不时地跳出来,但对此类问题还是有解决办法的。不过,能走到这里已经是有很牢固的基础了,你可以尝试添加一些额外的要素。

使用脚本运行测试的示例

留言 点赞 关注

我们一起分享AI学习与发展的干货

欢迎关注全平台AI垂类自媒体 “读芯术”

PHP该怎么学?

关于学习PHP,我想讲讲我的心路历程:前端:

但凡是一个网站都必须得让人能看得见,使用得起来。任何一个网站可以没有数据库,可以没有后端程序,但是必须得有前端页面,而这也是最早期的网站形态—一 一个只能展示文字和图片等信息的静态页面。

掌握静态网页的制作技术是学习开发网站的先决条件。这里面的学习包括 HTML,css,javascript,它们可以直接使用浏览器运行。

HTML负责网页的结构,用它来规定网页排版中哪部分是文字,哪部分可以放图片,音频文件,视频文件放在网页中什么位置显示等。

CSS可以把这些文字,图片,视频等信息拥有一定的合理好看的样式,可以定义文字的大小,颜色,图片的大小等等。

javascript可以让网页与人产生交互,就像你登录网站,点击登录按钮就会跳转,把鼠标放到菜单,菜单就会自动展示下拉,逛淘宝时,把鼠标放在产品图片上,图片就会放大等等。

我的学习技巧和心得:

我算是零基础学习开发的吧,连大学都没上,没系统的学过计算机专业,初次开始学习html时,我是以w3c手册为学习教材,但是越往后看越觉得里面写的东西琐碎繁多,手册里介绍了很多标签,标签又有很多属性,它们各自又代表的什么含义。

就像下面的这个表示表格的一些标签,这是手册给出的概念,看了之后似乎也明白又不太明白,看完又没记住,回想起来,还是一头雾水,像是什么也没学到。

那时我开始心急了,我无法想象我居然连基础的东西都都学不会,思量了一两天,我觉得我还是太浮躁了,我决定重新开始,动手敲敲试试,以前只是光看。就这样开始后,仿照别人家写的,运行一下看看浏览器显示的是什么效果,去掉某个属性之后看看是什么反应。我就这样笨拙的进行着,把每一个标签,每一个属性都敲了一遍,一个个的看到效果之后,我才理解手册里描述的概念是怎么回事了。

前端的知识比较锁碎,没有太多逻辑性可言。其中html和css的任何元素标记都要亲自动手实践,大部分新手之所以觉得难学,看不懂手册概念,主要是学习方法不对,“懒”是首要原因,因为不动手实践,光看概念是没什么用的。

所以克服掉懒的习惯,动起手来写一个HTML标记,运行之后看看效果吧,这样你才能真正掌握住。

不过,我建议初学的同学还是先看视频为好,因为操作效果都能看的到,手册这东西作为工具使用。

关于html和css中的标签和属性你没必要完全一个不差的记住,因为这没有太大的意义,等你做了一个小项目之后,你只需要记住常用的就行,其他的做到有印象,用的时候能想到,然后查手册即可。

当你学完之后一定要做一个简单的小项目,你学习时针对的都是散乱的知识点,最后要把这些东西整体的用一遍。

如何自学Python?

谢谢邀请,我以自身来谈谈

用我自身的经历来说吧,选择好的学习方法很重要,有人说去网上找视频学习,但是这种速度相对较慢,还是要实战学习,最好找到有实习机会的地方,配合书籍进行阅读。方能达到事半功倍的效果。

理论到实战,理解python火的原因-人工智能

推荐第一本书籍:python安装+基础入门+全面实战

书名:《Python 3破冰人工智能:从入门到实战》

学习过程中,一定要自己动手敲代码哦

推荐理由:

数学基础:从历年数学建模竞赛入手,解读人工智能中的数学方法。

编程实践:100余个代码实例,全面讲解网络爬虫、数据存储与数据分析等内容。

算法应用:实战案例辅以丰富图解,详尽分析人工智能算法特性及其应用场景。

本书创新性地从数学建模竞赛入手,深入浅出地讲解了人工智能领域的相关知识。本书内容基于Python 3.6,从人工智能领域的数学出发,到Python在人工智能场景下的关键模块;从网络爬虫到数据存储,再到数据分析;从机器学习到深度学习,涉及自然语言处理、机器学习、深度学习、推荐系统和知识图谱等。

此外,本书还提供了近140个代码案例和大量图表,全面系统地阐述了算法特性,个别案例算法来自于工作经验总结,力求帮助读者学以致用。书中还有一系列的Python周边小知识,教你更好地掌握Python,活学活用Python。

第二本书籍:选择自己的职业方向

可以是机器学习、深度学习、自然语言处理等

根据自身条件及感兴趣的方向,选择喜欢的书籍进行学习。

在学习的道路上,学习python是你要清楚是一门编程语言,所以一定要自己动手敲代码。如果你喜欢,欢迎点赞分享。

nodejs和php哪个开发效率高?

先说结论,nodejs和php相比较而言,nodejs的开发效率高。nodejs和php都是计算机领域的自动性生成软件,由于nodejs搭载了自动化生成工具,所以能够在计算过程当中提升效率,并且使得相应的数据都按照一定的规律进行整合,提升了效率。

PHPStudy怎样创建数据库?

1、单击打开phpstudy软件,然后单击mySQL管理器。

2、进入PHPmyadmin登录界面,默认帐号和密码为root。3、然后,单击数据库并输入所需的数据名称,例如:new,随机获取。4、然后,单击用户并单击“下一步”以添加用户。5、填写用户名,主机选择local,密码设置为2。一种是自己设置,另一种是使用系统生成。然后单击添加用户。6、添加成功后,您可以在下面的图像中看到它,然后单击编辑权限。7、将进入图形界面,但不在此处设置权限。8、将滚动条滚动到此点,然后选择刚刚设置的名称。9、将快速进入权限设置界面,数据和结构选择,管理全部,然后单击执行。10、完成上述步骤后,构建数据库就完成了。效果如下。

本文转载自互联网,如有侵权,联系删除