首页 开发编程 正文

php怎么设计单例

一般初学者入门语言大多都会选择Java、C语言、C++或者Python,关于学习视频或者资料的选择,所以一些Java开发所需要的东西自己也有学习过,下面就说一下我自己从Java开发到大数据开发的曲折学习之路(狗头保命.jpg)。所以Java后端涉及到的一些SSM框架等知识点我就不介绍了,自己看过的大数据学习相关的视频+资料大概是200...

php怎么设计单例,大数据主要学习哪些内容?

前言

要从事计算机行业的工作,不管是什么工作,开发、测试、还是算法等,都是要有一门自己比较熟练的编程语言,编程语言可以是C语言、Java、C++等,只要是和你后续工作所相关的就可以(后续用到其他语言的话,你有一门语言基础了,学起来就快了)。一般初学者入门语言大多都会选择Java、C语言、C++或者Python,而且现在网上有很多好的视频,可以供初学者学习使用。关于学习视频或者资料的选择,知乎或者百度等都有很多讲解了,也可以跟师兄师姐咨询,这样可以少走很多弯路,当然,有人说,走一些弯路总是有好处的,但是我这里说的弯路不是说不犯错误,不调bug,而是指学习资料以及一些知识点的偏重点,这样可以尽量节约一部分时间,刚开始时,总会有点迷,而且当你真正投入进去学习时,会发现时间总是不够用。

我前面是做的Java后端,后续才转的大数据,所以一些Java开发所需要的东西自己也有学习过,也都是按照正常的路线走的,JavaSE阶段,然后数据库,SSM框架,接着做了一些网上找的项目,之后发现对大数据比较感兴趣,就开始找大数据相关的资料学习,看视频,看博客,敲代码,前期大概花了3-4个月吧(公众号的这些资料就是我当时看过的),也是一步步艰难走过来的,刚刚开始接触大数据相关的东西时,一度怀疑这么多东西自己能否学得完,是不是能用得到,学完又忘了,忘了又回头看,不过还好,坚持过来了,还好没有放弃,工作也还ok,找的大数据开发岗,待遇也还不错吧。

下面就说一下我自己从Java开发到大数据开发的曲折学习之路(狗头保命.jpg)。因为我现在是做大数据相关的工作了,所以Java后端涉及到的一些SSM框架等知识点我就不介绍了,毕竟后续一段时间也没有做了。自己看过的大数据学习相关的视频+资料大概是200G-300G吧,从Linux->Hadoop->。。。->Spark->项目,还有就是一些面试文档,面经等。一些视频看了两遍或者更多,跟着学,跟着敲代码,做项目,准备面试。涉及到需要学习的东西包括:JavaSE,数据结构与算法(计算机行业必备),MySQL,Redis,ES(数据库这些可以看项目,也可以自己熟练一两个),Linux,Shell(这个可以后期补),Hadoop,Zookeeper,Hive,Flume,Kafka,HBase,Scala(Spark是Scala写的,会Scala做相关的项目会更容易入手),Spark,Flink(这个是找工作时有面试官问过几次liao不liao解,所以找完工作才开始接触学习),相关项目。

编程语言阶段学习

  如果是零基础的话,建议还是从视频开始入门比较好,毕竟一上来就看教材,这样有些代码的来龙去脉可能不是很了解。如果是有一些编程语言基础的话,从视频开始也会更简单,一些for、while循环你都知道了,学起来也会快很多。  JavaSE我是选择的某马刘意的为主,因为刚刚开始学Java看过一本从《Java从入门到精通》,没什么感觉,后续又在看了某课网的Java初级视频,还是没感觉出来啥(当时就有点怀疑自己了。。。),可能有点没进入状态。  还好后续找了某马刘意老师的JavaSE视频(我是看的2015年版本,那时候19版还没出),觉得他讲的真的是很好很详细,每个知识点都会有例子,也都会带你敲代码,做测试,可能前面有C语言基础,然后也看过Java的一些语法,所以学起来还是比较顺利,后面的IO流、多线程等知识点时,也有看书看博客,或者看看其他老师的课程,讲解的可能自己比较容易接受就可以,反正都是多尝试(下面会给出视频链接),尽量懂一些,后续可以回头来复习。JavaSE相关的视频,先看一遍,后续有时间建议再看一遍,而且这些经典的视频,看两遍真的是享受。  如果有一定基础了的,JavaSE前面七八天的视频可以加速看,但是不懂的一定要停下开仔细想想,零基础的还是尽量不要加速吧,慢慢来稳些。后面的视频建议还是跟着视频来,尽量不要加速,代码尽量都敲一敲,第一遍基本上一个月到一个半月可以结束。  JavaSE可以说是很基础也很重要的东西,主要重点包括面向对象、集合(List、Map等),IO流,String/StringBuilder/StringBuffer、反射、多线程,这些最好是都要熟悉一些,面试也是重点。  JavaSE之后,如果你是要走前端或后端开发路线的话,可以跟着一些网上的视频继续学习,这里我就不多做介绍了。

===========分割线,Scala可以后续Spark阶段再接触学习=============

  Scala的学习,Scala是一门多范式 (multi-paradigm) 的编程语言,Scala支持面向对象和函数式编程,最主要的是后续Spark的内容需要用到Scala,所以前面学习了JavaSE,到Spark学习之前,再把Scala学习一波,美滋滋,而且Scala可以和Java进行无缝对接,混合使用,更是爽歪歪。后续Spark学习时基本都是用的Scala,也可能是和Java结合使用,所以Spark之前建议还是先学一波Scala,而且Scala用起来真是很舒服(wordcount一行代码搞定),适合迭代式计算,对数据处理有很大帮助,不过Scala看代码很容易看懂,但是学起来还是挺难的,比如样例类(case class)用起来真是nice,但是隐式转换学起来就相对比较难。学习Scala的建议:1. 学习scala 特有的语法,2. 搞清楚scala和java区别,3. 了解如何规范的使用scala。Scala对学习Spark是很重要的(后面Flink也是要用),虽然现在很多公司还是用Java开发比较多,而且Spark是Scala写的,如果要读源码,会Scala还是很重要的(至少要看得懂代码)。  Scala主要重点包括:隐式转换和隐式参数、模式匹配、函数式编程。这里我看的是某硅谷韩老师的Scala视频,韩老师讲的真的很不错,五星推荐,哈哈。  也许有人会觉得Python也是需要的,但是学习阶段,可能用Java还是比较多,面试也基本都是问Java相关的内容,所以Python后续工作会用到的话,再看看Python的内容吧。

大数据框架阶段学习

  大数据这方面的知识点自己可以说真的是从零开始的,刚刚开始学那会Linux基本都没用过,心里那个虚啊,而且时间也紧迫,想起来都是一把辛酸泪。  刚刚开始学的时候,看了厦门大学林子雨的《 大数据技术原理与应用》课程,可能这个课程是面对上课的,所以看了一些,感觉对自己帮助不是很大(并不是说课程不好,可能不太适合自己,如果是要了解理论知识,很透彻,但是俺时间紧迫啊),所以就继续在网上找视频,然后发现某硅谷的培训视频很多人去参加,而且知识点也很齐全,大数据相关组件都有讲课,还有一些项目比较好,所以就找了它相关的视频,当时看的是2018年的,所以视频不算旧。  来一张推荐系统架构的图,先看看

  一般来说,Flume+Kafka对数据进行采集聚合传输,一方面Spark对实时数据进行处理,传输给相应的数据处理模块(比如实时数据处理的算法模块,Spark也有提供常见的机器学习算法的程序库),另一方面采集的数据也可以放入数据库(HBase、MongoDB等)中,后续MapReduce对离线数据进行离线处理,数据处理完毕用于后续的使用,数据采集处理的流程大概就是这样。如果是推荐系统,实时推荐会给用户产生实时的推荐结果,让用户进行查阅选择,比如你在界面浏览了或者看了新的物品,然后刷新下界面,可能给你展示的东西就有一些变成跟你刚刚浏览的相关了。离线推荐的话主要是对离线数据进行处理,为物品或种类做出相似的推荐,如果后续用户搜索相应的物品时,给用户展示相应的产品。

  大数据学习路线:Linux -> Hadoop -> Zookeeper -> Hive -> Flume -> Kafka -> HBase -> Scala -> Spark -> 项目 > Flink( 如果需要学习Storm,在Spark前面学习)

一、Linux(基本操作)

  一般我们使用的都是虚拟机来进行操作,所以要安装VM( Virtual Machine),我使用的是CentOS,所以VM和CentOS都要跟着安装好,跟着视频操作,一定要动手实践,将一些Linux基本命令熟练掌握,一些VIM编辑器的命令也要会用,做相应的一些配置,使用SecureCRT来做远程登录操作(也可以使用其他的,自己顺手就行)。再强调一遍,基本操作命令尽量熟练一点,如果一下记不住,打印一些常用的,自己看看,多用多实践,慢慢就会用了。还有一些软件包的下载安装卸载等,跟着操作一遍,熟悉下,后续都会使用,Shell编程可以后续补。

二、Hadoop(重点中的重点)

  Hadoop是一个分布式系统基础框架,用于主要解决海量数据的存储和海量数据的分析计算问题,也可以说Hadoop是后续整个集群环境的基础,很多框架的使用都是会依赖于Hadoop。主要是由HDFS、MapReduce、YARN组成。这个部分安装Hadoop,Hadoop的三个主要组成部分是重点,对他们的概念要理解出来,知道他们是做什么的,搭建集群环境,伪分布式模式和完全分布式模式的搭建,重要的是完全分布式的搭建,这些部分一定要自己动手实践,自己搭建集群,仔细仔细再仔细,Hadoop的NameNode,DataNode,YARN的启动关闭命令一定要知道,以及他们的启动关闭顺序要记住,不要搞混。后续视频会有一些案例操作,跟着写代码,做测试,把基本环境都配置好,后续这个集群(完全分布式需要三台虚拟机)要一直使用。

三、Zookeeper

  Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。分布式安装ZK,对ZK有一定的了解就可以了,了解它的应用场景,以及内部原理,跟着做一些操作,基本上有一些了解即可。

四、Hive(重点)

  Hive是基于Hadoop的数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive的安装,它的数据类型,以及它的数据定义、数据操作有较好的了解,怎么操作表(创建表、删除表,创建什么类型的表,他们有什么不同),怎么操作数据(加载数据,下载数据,对不同的表进行数据操作),对数据的查询一定要进行实践操作,以及对压缩方式和存储格式要有一些了解,用到时不懂也可以去查,最好是能理解清楚。这部分有什么面试可能会问,所以视频后续的面试讲解可以看看,理解清楚。

五、Flume

  Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。对于Flume,对它的组成架构,以及对Flume Agent的内部原理要理解清楚,Source、Channel、Sink一定要知道它们的各种类型以及作用,有哪些拓扑结构是常见常用的,例如一对一,单Source、多Channel、多Sink等,它们有什么作用,要理解清楚。还有一个重点,就是对Flume的配置文件一定要了解清楚,不懂的可以上官网查看案例,对于不同的情况,它的配置文件要做相应的修改,才能对数据进行采集处理,视频中的实践案例一定要跟着做。

六、Kafka(重点)

  Kafka是一个分布式消息队列,用来缓存数据的。比如说实时计算中可以通过Flume+Kafka对数据进行采集处理之后,Spark Streaming再使用Kafka相应的Topic中的数据,用于后续的计算使用。对于Kafka,要理解Kafka的架构,什么是Kafka,为什么需要Kafka,应用场景。基本的命令行操作要掌握,比如怎么创建删除Topic,怎么通过生产者生成数据,消费者怎么消费数据等基本操作,官网也是有一些案例可以查阅的。

七、HBase(重点)

  HBase是一个分布式的、基于列存储的开源数据库。HBase适合存储PB级别的海量数据,也可以说HBase是很适合大数据的存储的,它是基于列式存储数据的,列族下面可以有非常多的列,列族在创建表的时候就必须指定。所以对HBase的数据结构要有一定的理解,特别是RowKey的设计部分(因为面试被问到过,咳咳,所以点一下),对于它的原理要了解,一些基本操作也要都会,比如创建表,对表的操作,基本的API使用等。

八、Spark(重点中的重点)

  Spark是快速、易用、通用的大数据分析引擎。一说到Spark,就有一种哪哪都是重点感觉,哈哈。  Spark的组成可以看下图

  Spark是基于内存计算的,对于数据的处理速度要比MapReduce快很多很多,而且数据挖掘这些都是要对数据做迭代式计算,MapReduce对数据的处理方式也不适合,而Spark是可以进行迭代式计算,很适合数据挖掘等场景。Spark的Spark SQL能够对结构化数据进行处理,Spark SQL的DataFrame或DataSet可以作为分布式SQL查询引擎的作用,可以直接使用Hive上的表,对数据进行处理。Spark Streaming主要用于对应用场景中的实时流数据进行处理,支持多种数据源,DStream是Spark Streaming的基础抽象,由一系列RDD组成,每个RDD中存放着一定时间段的数据,再对数据进行处理,而且是基于内存计算,速度快,所以很适合实时数据的处理。Spark MLlib提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据 导入等额外的支持功能。对Spark的核心组件、部署模式(主要是Standalone模式和YARN模式)、通讯架构、任务调度要有一定了解(面试问到了可以说一波),Spark Shuffle要好好理解,还有内存管理要知道,对Spark的内核原理一定要好好理解,不仅面试可能要用,以后工作也是有帮助的。

九、Flink(重点中的重点)

  Flink是一个框架和分布式处理引擎,用于对无界(有开始无结束)和有界(有开始有结束)数据流进行有状态计算。现在主要是阿里系公司使用的比较多,很多公司使用的还是Spark居多,而且Flink基本上都是和Spark很多功能大体上一样的,但是以后Flink和Spark孰强孰弱还有待时间的考验,不过Flink近几年越来越火了这是事实,所以如果有时间有精力的话,可以学一学Flink相关的内容也是很不错的。Spark和Flink主要都是在数据处理方面应用,在数据处理方面的话,离线数据处理:Flink暂时比不上Spark,Spark SQL优点在于可以和Hive进行无缝连接,Spark SQL可以直接使用Hive中的表;Flink暂时做不到这一步,因为官方不支持这一操作,Flink只能将数据读取成自己的表,不能直接使用Hive中的表。对于实时数据的处理:Flink和Spark可以说是平分秋色吧,而且Flink是以事件为驱动对数据进行处理,而Spark是以时间为驱动对数据进行处理,在一些应用场景中,也许Flink的效果比Spark的效果还要好些,因为Flink对数据更加的敏感。比如一秒钟如果触发了成千上万个事件,那么时间驱动型就很难对数据做细致的计算,而事件驱动型可以以事件为单位,一个个事件进行处理,相比而言延迟更低,处理效果更好。现在使用Flink的公司越来越多,有时间学习下,也算是有个准备。

项目阶段

  其实某硅谷的视频里面有很多大数据相关的项目,而且都是文档配代码的,B站上也有视频,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。  根据自己情况,选择两到三个项目重点跟着做,理解透彻一点

大数据项目实战

  某硅谷的视频里面有很多大数据相关的项目,而且都是文档配代码的,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。根据自己情况,选择两到三个项目重点跟着做,理解透彻一点。相关项目文档资料我已经放到网盘,GongZhongHao回复相应关键字获取领取方式。   相关项目、涉及技术框架及其B站链接(B站链接主要是为了有些小伙伴网盘速度限制,这样就下载文档资料即可)

书籍

  书籍部分直接云盘链接保存即可,这里我放两张Java开发和大数据开发我自己的书单(很多,路漫漫,吾将上下而求索~)  Java后端书架:

  大数据书架:

  大概就这些,看完就需要很久了,大部分我也是需要的时候看相应的部分,所以有时间可以好好看下,不然就需要哪一部分看哪一部分,有助于学习即可。

最后

  大数据开发也是需要编程基础的,并不是学会使用这些框架怎么样就可以了,所以对于编程语言,数据结构与算法,计算机网络这些基础也是要的,这些基础知识也有助于自己以后的发展,如果是应届生校招的话,面试基本上都是JavaSE和数据结构与算法等的知识点,还有大数据组件相关的知识点,以及对项目的理解,这些都是要自己面试前准备好的,多看面经,多找面试题看,面几次,心里有谱了,后续面试就好了。  不管是从事什么样的计算机相关的岗位,编程都是很重要的,数据结构与算法特别重要,还有就是leetcode等编程网站刷题,提升自己的编程思维,后续笔试面试都要要的。  要将一行行代码看做一叠叠rmb,但是一行行代码能不能转换成一叠叠rmb,自己就一定要:坚持,多敲代码;多敲代码,坚持;坚持。 

一次完整的http请求过程是怎样的?

面试中常问的一个问题就是:在浏览器输入 URL 地址回车后,发生了什么?这里简单概述一下。

总体流程图如下:

1. URL 解析

浏览器首先对 URL 解析,解析出协议、域名、端口、资源路径、参数等。

2. DNS 域名解析

一般而言,域名比 IP 地址更好记,因而我们更习惯在浏览器输入域名而不是 IP,而计算机网络通信所识别的计算机标识是 IP 地址,因而首先需要将一个域名转化为相应的 IP 地址,这就是 DNS 协议所要做的事。

DNS 就像我们手机中的通讯录一样,通讯录中备注的是对方的姓名(类似于域名),但是打电话的时候实际需要的是电话号码(类似于 IP 地址),利用通讯录将一个姓名转化为对应的电话号码。

3. 建立 TCP 连接

一般在浏览器输入 URL,应用层的协议为 HTTP/HTTPS,其需要的是可靠的服务,所使用的传输层协议为 TCP。

通过域名解析后,浏览器获得了服务器的 IP,则向服务器发起 TCP 连接,这时候就会发生三次握手行为。

4. 发送 HTTP 请求

当浏览器与服务器建立连接后,就可以进行数据通信过程,浏览器会给服务器发送一个 HTTP 请求报文,请求报文包括请求行、请求头、请求空行和请求体。在请求行中会指定方法、资源路径以及 HTTP 版本,其中资源路径是指定所要操作资源在服务器中的位置,而方法是指定要对这个资源做什么样的操作。

从浏览器输入 URL,资源路径在第一步就已经被解析出来了,而方法为 GET,表明要获取资源,相当于增删改查中的查询。

5. 服务器对请求进行处理并做出响应

当收到浏览器发送的请求报文后,服务器会对此请求报文进行相应的处理,并返回响应报文给浏览器。比如请求报文想要获取(GET) index.html 这个文件,那么服务器就会找到 index.html 文件,然后将此文件作为响应报文中的响应体发送给浏览器。

响应报文包括响应行、响应头、响应空行和响应体。在响应行中会指定 HTTP 版本、状态码和对状态码的解释信息,比如 HTTP/1.1 200 OK ,其中 200 是响应码,指请求被正常处理,也就是成功 OK 的意思。

6. 浏览器解析渲染页面

浏览器收到服务器的响应报文后,从响应体中得到相应资源,如 HTML 文件、图片、视频等,并进行渲染,然后将结果呈现给用户。

7. 断开 TCP 连接

当数据完成请求到返回的过程之后,根据请求/相应头中 Connection 的 Keep-Alive 属性可以选择是否断开 TCP 连接,如果不需要再进行数据通信,即可以关闭连接,此时则会发生四次挥手行为。

注意:

浏览器为了提升性能,在 URL 解析之后,实际会先查询是否有缓存,如果缓存命中,则直接返回缓存资源。如果是 HTTPS 协议,在建立 TCP 连接之后,还需要进行 SSL/TLS 握手过程,以协商出一个会话密钥,用于消息加密,提升安全性。

phpweb网站进入后台的时候?

1时间,时区设置是否正确。2清空浏览器缓存。3你是否通过路由器上网,请去掉路由器试试,如果可以,请升级路由器固件或者更换路由器。

电脑录屏用什么软件好?

Apowersoft呗,一个免费的在线录屏软件,不需要安装软件(也有桌面版软件),即可在网页上进行屏幕录制,下面我简单介绍一下这个软件的安装和使用:

在线录屏

1.这个非常简单,直接打开Apowersoft官网,点击在线录屏,就会切换到如下界面:

2.点击开始录制,首次启动的话,需要下载安装启动器,这里直接点击下载就行,如下,大概也就1M左右:

3.这里需要注意的是,最好先注册登录一下,不然录制的视频会存在水印,后期也不好编辑处理:

4.最后就可以直接点击页面的“开始录制”按钮,选择需要录制的区域,开始屏幕录制了,非常方便,如下:

5.录制后的视频效果如下,清晰度还可以,默认会保存到“我的文档”里边,格式为mp4,也可保存为GIF的:

桌面录屏

1.这个直接在官网上下载桌面版的就行,如下,支持Windows,Mac,Android,iOS等,选择适合自己平台的版本:

2.安装完成后,也需要注册登录,主界面如下,比较简洁,这里你可以选择全屏进行录制,也可以选择区域进行录制,还可以开启摄像头录制:

3.录制后的视频如下,清晰度还可以,但由于是试用版,功能还是受一定限制,基本可以满足个人简单使用,默认存放路径也是“我的文档”:

至此,我们就介绍完了Apowersoft的简单安装和使用。总的来说,这个软件使用起来还不错,非常简单,也很容易操作,基本可以满足日常应用,只要你多练习几遍,很快就能掌握使用的。当然,你也可以使用其他录屏软件,像Win10自带的Xbox,录屏大师等都可以,选择适合自己的一款就行,网上也有相关教程和资料,非常丰富,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言补充。

自由职业者后端会优先考虑用go语言吗?

从技术上讲,Go完胜JAVA,毕竟它更加年轻,而且Go没有Java浓浓的学术味道。Go从开发之初就是彻底为了实际工程而开发的语言。Java最初是为嵌入式设计的,后来赶上*次互联网风口(泡沫),转化成了互联网语言。最早的Java前后端通吃,后来由于臭名昭著applet被迫转到后端。最早的Java核心技术全两册加起来只有2厘米厚,第9版的都已经比辞海厚了。Java逐渐从一个肌肉少年变成一个油腻大肥仔。12年的时候,同学有幸进入某大厂,做JAVA的他非常痛苦地学习了一种叫做Go的语言。第二年他再次出现在我面前已是满面春风:“老大,Go实在太爽了,未来后台早晚是Go的天下”。几十年的发展,海量的JAVA遗留项目需要维护,因此JAVA程序员还会继续招聘。想把这么庞大的项目统统转移到Go,短期内不可能。给你2万月薪维护一个JAVA老项目和给你1万月薪做一个Go新项目,你会选择哪一个呢?:p从来没有那种技术不行了,永远是某人不行了。结合自己的经济状况和岗位实际,灵活掌握吧。都是好技术。

学互联网技术来山西新华:https://www.sxxhdn.com/?source=wenda&CXB

本文转载自互联网,如有侵权,联系删除