峰谷利用创历史最好水平,峰谷电有必要开通吗?
峰谷用电有必要申请。
国家采用峰谷电价,谷电的价格低于峰电的价格,鼓励大家用谷电,减少峰电时段的用电负荷,这样使用谷电的人可以减少开支,电力部门也能使电力设备得到充分的利用,减少不必要的投资和能源消耗。如果你用电都在白天那就要多花钱,峰电是早上8:00到晚上22:00,其余时间是谷电,峰电每度比原来贵,谷电才二毛八分多。有人测算过,峰电谷电占比要达到86.5%比13.5%才有便宜。
峰谷用电的电价是怎么规定的?
1.峰谷用电是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价为0.568元/kwh;22:00—次日8:00共10个小时称为谷段,执行谷电价为0.288元/kwh。
2.只有当居民低谷用电比例达到总用电量的11%以上时,其平均电价才会低于普通居民电价。也就是说低谷用电的比例越多,平均电价下降就越大。
3.“峰谷电价”意义在于,鼓励居民利用低谷电价的优惠条件大量消费低谷电力,比如电热水器、空调和其他电器设备。同时,对电力部门来说,将高峰用电转移到低谷时段,既缓解了高峰电力供需缺口,又促进了电力资源的优化配置,是一项“削峰填谷”的双赢策略。
4.如果每月的低谷用电量占当月总用电量的比例达到28%以上,且月用电量均在170千瓦时以上时,用一年的时间就可以补偿申请峰谷电价时缴纳的100元费用。5.如果每月低谷用电比例在11%以下的话,那么客户实际电费支出反而会比执行普通居民电价的客户有所增加。
中央计划修建临县碛口水电站吗?
有
碛口水电站位于黄河中游北干流的中部,陕西、山西两大电网之间.装机容量180万kw。电站运行条件优越,可以承担电力系统的调峰、调频任务以及承担负载、事故备用容量。陕西、山西两省电力系统目前调峰问题比较突出,随着国民经济的发展,电力负荷增长很快,峰谷差将越来越大,电网调峰问题将日趋严重,急需兴建大型的调峰电源。对口水电站作为一个不可多得的大型调峰电源,不仅开发条件优越,而且规模适中,投资造价较低,经济效益好,应优先开发建设。
无锡电费峰谷怎么计算?
从7月1日起,无锡阶梯电价正式实施,即居民用户分三档收费,第一档月用电量在230度以内,电价维持不变;第二档在231度~400度,在第一档电价的基础上,每度加价0.05元;第三档为电量400度以上,在第一档电价的基础上,每度加价0.3元。针对有市民反映的家中人口较多的情况,供电部门制定了一定的补偿政策——户籍人口5人以上(含5人)的家庭用户,第一档用电基数可上浮100度,即日起就可以前往用电地址所属供电营业厅办理用电基数调整业务。
储能水电站的效率据说能达到80?
储能水电站也即抽水蓄能水电站,其主要包括上水库、下水库以及水泵水轮机,其工作原理是:在用电低谷时期,利用电网中多余的电能将水从下水库抽到上水库,在用电高峰时期,再利用上水库中的水体流向下水库发电。在抽水、水发电的过程中都会进行能量损失,现阶段控制水泵和水轮机的效率在90%以上是完全可以做到的,也就是效率到达80%是理论上可以做到的,但在实际运行情况下,一般都会低于80%,而对于这种类型的电站其更应该看重的是效益,而非效率。
抽水蓄能电站的工作原理抽水蓄能电站看似是一种比较傻的做法,因为用电抽水、再用水发电,无疑会造成能量损失,也就是得不偿失,其实这却是电力行业一个难以解决的巨大问题,那就是电能无法储存,既然无法储存,在用电低谷时段,一旦电网有富裕的电能,就会造成浪费,与其浪费,还不如先将水抽到高处,暂时储存起来,虽然这种做法有一定的能量损耗,但是也比白白浪费强。
抽水蓄能电站工作原理图而等到用电高峰时段,则可以将高处储存起来的水体下泄下来进行发电,从而在高峰时段发电,以弥补电网供电的不足,那么这种用电模式就诞生了一种新型的水电站,也即抽水蓄能电站。
通过这种工作方式,就可以知道抽水蓄能电站要做的工作是:抽水、储存水、水力发电,所以其必须的四个部件是:水泵(抽水)、水轮机(发电)、上水库和下水库(用来存放水),其中水泵和水轮机可以共用,也就是可逆式的水轮泵机。
抽水蓄能电站的能量损耗抽水蓄能电站的能量损耗主要包括两部分损耗,抽水损耗和发电损耗。对于抽水损耗,可以理解为泵机损耗、水头损耗,泵机损耗也可以理解为泵机电能转化的效率,能量不可能是百分之百的转化,所以泵机会有一定的效率,一般情况下,其效率会随着功率而变化,在额定功率附近,其效率一般最高,现阶段技术可以达到93%~95%;水头损失则可以理解为水体在管道内摩擦、水体经过弯道、进口等部位的水体能量损失,这部分和管道长度、设置有关系,但是占比不是很大,一般也就1%以内,也就在抽水过程中,将转化效率控制在90%是可以的。
水轮机的综合特性曲线(中心点为效率最高区)同样在发电过程中,其损耗也包括水轮机损耗和水头损耗,其原理与上面相同,一般情况下,在水轮机额定出力附近,其效率最高,对于不同形式的机组不同,例如叶片设置、进口形式等等,一般情况下,其额定效率也可以控制在90%以上;水头损失和抽水过程类似,但是一般也不太大,也就是发电过程中,将转化效率控制在90%也是可以做到的。
管道的局部水头损失在抽水、发电的转化效率都控制在90%的基础上,那么抽水蓄能电站的总效率也就控制在81%了,但是这些需要发生在抽水时泵机在额定功率附近、发电时水轮机在额定出力附近时,如果不能满足这两个条件,那么效率自然也不会达到如此高。
一般情况下,发电和抽水都取决于电网用电,所以这种额定工况很少,也就是一般情况下,抽水蓄能电站的效率都会低于80%。
抽水蓄能电站更看重效益,而非效率对于抽水蓄能电站,即便效率达到80%以上,仍是不划算的,因为抽水、再发电已经造成了能量浪费,对于这种类型电站更应该看重其存在的价值和效益。
电网与抽水蓄能电站电网结构是复杂的,其用电负荷和发电负荷都存在较大的不确定性,如果用电负荷大于发电负荷,则会造成用电无法得到满足;而用电负荷小于发电负荷,则会造成发出的电能浪费,而抽水蓄能电站就是专门解决这一矛盾和问题的。
随着丰枯电价、分时电价等电网政策,在用电低谷时期,进行抽水蓄能,在用电高峰时期,采用蓄水进行发电,就能解决这一用电矛盾和问题,所以,抽水蓄能电站即便效率再低,其发挥的效益却是巨大的,这也是抽水蓄能电站能够快速发展的原因。
我国抽水蓄能电站的发展历程国外有关抽水蓄能电站的发展已有一百余年的历史,而我国则是从上世纪60年代开始的,我国于1968年和1973年先后建成岗南和密云两座小型混合式抽水蓄能电站,装机容量分别为11MW和22MW,由此掀开了抽水蓄能电站的发展历程。
从改革开放后,我国抽水蓄能电站迎来了大发展,1991年,装机容量270MW的潘家口混合式抽水蓄能电站投入运行,是我国当时最大规模的抽水蓄能电站。
丰宁抽水蓄能电站投产截止目前我国已经成为全国抽水蓄能电站总装机容量最大的国家,而位于我国河北的丰宁抽水蓄能电站总装机容量3600MW,已经于2020年开始蓄水投运,其也成为目前世界上总装机容量最大的抽水蓄能电站。