首页 生活常识 正文

山峰状的函数图像 如何判断波峰波谷

3、图像分割的分割方法如何判断波峰波谷判断波峰波谷方法:那么直方图其实代表的就是各个灰度值出现的次数或整体的概率分布,在波的曲线上表示为一个高点.更多关于如何判断波峰波谷,1/4=0.25Hz图像分割的分割方法灰度阈值分割法是一种最常用的并行区域技术,阈值分割方法实际上是输入图像f到输出图像g的如下变换:阈值分割算法的关键是确定阈值,...

今天给各位分享图像峰谷图像的知识,其中也会对山峰状的函数图像进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录:

如何判断波峰波谷

判断波峰波谷方法:

1、一阶导为0的点就是波峰波谷,数字图像用差分代替微分,一阶差分就是前值减后值。

2、如果好几个都是0或约为0,那这个波峰或波谷应该是比较突出的。也可以通过计算水平的值,离水平值远的波峰或波谷。

3、在画出直方图之前,其实就是一个统计的过程,统计各个灰度值出现的次数,那么直方图其实代表的就是各个灰度值出现的次数或整体的概率分布,可以利用求一个数组中所以数的最大值和最小值来求波峰和波谷。最大值一定出现在波峰,而最小值一定出现在波谷。

波谷是指横波在正交于传递方向上极小值,与之相对的极大值则被称为波峰。因为极小和极大只是取决于正交于传递方向上的坐标方向而言,故两者合称为极值。

波峰是指波在一个波长的范围内,波幅的最大值,与之相对的最小值则被称为波谷。以横波为例,突起的最高点就是波峰,陷下的最低点就是波谷。波引起最大正位移的点,在波的曲线上表示为一个高点.

更多关于如何判断波峰波谷,进入:查看更多内容

画一个横波的图像,帮我理解一下什么是波长,波峰,波谷,周期,以及频率。 详细点。

如上图啊,a,b均为横波:

先解释波峰,波谷:

图a中横坐标为1和3处称为波峰,横坐标为0和2处称为波谷。简单来说,就是波的每一个最高点和最低点都分别称为波峰和波谷。

波长:

上图a波长为4m。简单来说就是波上任意一点开始,到再一次出现形状相同的点的位置之间的距离。

周期:

走完一个波长需要的时间。如图b,需要4秒。

频率:

周期的倒数:即1/周期  对应图b即:1/4=0.25Hz

图像分割的分割方法

灰度阈值分割 法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。阈值分割方法实际上是输入图像f到输出图像g的如下变换:

其中,T为阈值,对于物体的图像元素g(i,j)=1,对于背景的图像元素g(i,j)=0。

由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值逐个进行比较,而且像素分割可对各像素并行地进行,分割的结果直接给出图像区域。

阈值分割的优点是计算简单、运算效率较高、速度快。在重视运算效率的应用场合(如用于硬件实现),它得到了广泛应用。

人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。

全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。

在许多情况下,物体和背景的对比度在图像中的各处不是一样的,这时很难用一个统一的阈值将物体与背景分开。这时可以根据图像的局部特征分别采用不同的阈值进行分割。实际处理时,需要按照具体问题将图像分成若干子区域分别选择阈值,或者动态地根据一定的邻域范围选择每点处的阈值,进行图像分割。这时的阈值为自适应阈值。

阈值的选择需要根据具体问题来确定,一般通过实验来确定。对于给定的图像,可以通过分析直方图的方法确定最佳的阈值,例如当直方图明显呈现双峰情况时,可以选择两个峰值的中点作为最佳阈值。

图1(a)和(b)分别为用全局阈值和自适应阈值对经典的Lena图像进行分割的结果。

区域生长和分裂合并法是两种典型的串行区域技术,其分割过程后续步骤的处理要根据前面步骤的结果进行判断而确定。 区域生长 区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。

区域生长需要选择一组能正确代表所需区域的种子像素,确定在生长过程中的相似性准则,制定让生长停止的条件或准则。相似性准则可以是灰度级、彩色、纹理、梯度等特性。选取的种子像素可以是单个像素,也可以是包含若干个像素的小区域。大部分区域生长准则使用图像的局部性质。生长准则可根据不同原则制定,而使用不同的生长准则会影响区域生长的过程。区域生长法的优点是计算简单,对于较均匀的连通目标有较好的分割效果。它的缺点是需要人为确定种子点,对噪声敏感,可能导致区域内有空洞。另外,它是一种串行算法,当目标较大时,分割速度较慢,因此在设计算法时,要尽量提高效率。

区域分裂合并

区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标提取。分裂合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,实现目标提取。分裂合并的假设是对于一幅图像,前景区域由一些相互连通的像素组成的,因此,如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可得到前景目标。

在这类方法中,最常用的方法是四叉树分解法(如图3所示)。设R代表整个正方形图像区域,P代表逻辑谓词。基本分裂合并算法步骤如下:(1)对任一个区域,如果H(Ri)=FALSE就将其分裂成不重叠的四等份;

(2)对相邻的两个区域Ri和Rj,它们也可以大小不同(即不在同一层),如果条件H(Ri∪Rj)=TRUE满足,就将它们合并起来。

(3)如果进一步的分裂或合并都不可能,则结束。

分裂合并法的关键是分裂合并准则的设计。这种方法对复杂图像的分割效果较好,但算法较复杂,计算量大,分裂还可能破坏区域的边界。 图像分割的一种重要途径是通过边缘检测,即检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。这种不连续性称为边缘。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。

图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此常用微分算子进行边缘检测。常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。

由于边缘和噪声都是灰度不连续点,在频域均为高频分量,直接采用微分运算难以克服噪声的影响。因此用微分算子检测边缘前要对图像进行平滑滤波。LoG算子和Canny算子是具有平滑功能的二阶和一阶微分算子,边缘检测效果较好,如图4所示。其中loG算子是采用Laplacian算子求高斯函数的二阶导数,Canny算子是高斯函数的一阶导数,它在噪声抑制和边缘检测之间取得了较好的平衡。关于微分算子的边缘检测的详细内容可参考文献 。 与其他图像分割方法相比,基于直方图的方法是非常有效的图像分割方法,因为他们通常只需要一个通过像素。在这种方法中,直方图是从图像中的像素的计算,并在直方图的波峰和波谷是用于定位图像中的簇。颜色和强度可以作为衡量。

这种技术的一种改进是递归应用直方图求法的集群中的形象以分成更小的簇。重复此操作,使用更小的簇直到没有更多的集群的形成。

基于直方图的方法也能很快适应于多个帧,同时保持他们的单通效率。直方图可以在多个帧被考虑的时候采取多种方式。同样的方法是采取一个框架可以应用到多个,和之后的结果合并,山峰和山谷在以前很难识别,但现在更容易区分。直方图也可以应用于每一个像素的基础上,将得到的信息被用来确定的像素点的位置最常见的颜色。这种方法部分基于主动对象和一个静态的环境,导致在不同类型的视频分割提供跟踪。

关于图像峰谷图像和山峰状的函数图像的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除