首页 生活常识 正文

峰谷差盐加热供暖(电采暖峰谷)

2、熔融盐供暖的原理是什么3、差热曲线的形状与哪些因素有关,熔融盐供暖的原理是利用夜间低谷电将低温罐中熔盐加热至500℃以上储存在高温罐中,根据用热温度和用途的不同经过相应的熔盐换热器加热空气和水,熔盐、冷盐罐、热盐罐、熔盐泵、熔盐电加热器和熔盐-水换热器。影响差热分析结果的主要因素是什么差热分析曲线根据国际热分析协会ICTA的规定,...

本篇文章给大家谈谈峰谷差盐加热供暖,以及电采暖峰谷对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录:

熔融盐储能绿色供暖的原理是什么?

夜间蓄热:熔盐从冷盐罐流出,经熔盐加热器升温后进入热盐罐储存。

白天用热:熔盐从热盐罐流出,经熔盐-水换热器加热水降温后回到冷盐罐。

熔融盐供暖的原理是什么

熔融盐是盐的熔融态液体,通常说的熔融盐是指无机盐的熔融体。形成熔融态的无机盐其固态大部分为离子晶体,在高温下熔化后形成离子熔体,因此最常见的熔融盐是由碱金属或碱土金属与卤化物、硅酸盐、碳酸盐、硝酸盐以及磷酸盐组成。熔融盐有不同于水溶液的诸多性质,如高温下的稳定性,在较宽范围内的低蒸气压,低的粘度,具有良好的导电性,较高的离子迁移和扩散速度,高的热容量,具有溶解各种不同材料的能力等。

熔融盐供暖的原理是利用夜间低谷电将低温罐中熔盐加热至500℃以上储存在高温罐中,白天将高温熔盐从罐中抽出,根据用热温度和用途的不同经过相应的熔盐换热器加热空气和水,按照用户所需进行供热供暖。熔盐换热后降温流入低温熔盐罐,形成完整的熔盐加热-升温-取热-降温的循环,实现将夜间低谷电能转化成热能储存起来在白天使用的循环系统。其主要材料和设备:熔盐、冷盐罐、热盐罐、熔盐泵、熔盐电加热器和熔盐-水换热器。

差热曲线的形状与哪些因素有关,影响差热分析结果的主要因素是什么

差热分析曲线

根据国际热分析协会ICTA的规定,差热分析DTA是将试样和参比物置于同一环境中以一定速率加热或冷却,将两者间的温度差对时间或温度作记录的方法。从DTA获得的曲线试验数据是这样表示的:纵坐标代表温度差ΔT,吸热过程显示一个向下的峰,放热过程显示一个向上的峰。横坐标代表时间或温度,从左到右表示增加。如附图左图所示。

图中:

基线:指DTA曲线上ΔT近似等于0的区段,如oa、de、gh。如果试样和此外的热容相差较大,则易导致基线的倾斜。

峰:指DTA曲线离开基线又回到基线的部分。包括放热峰和吸热峰,如abd、efg。

峰宽:指DTA曲线偏离基线又返回基线两点间的距离或温度间距,如ad或Td-Ta。

峰高:表示试样和参比物之间的最大温度差,指峰顶至内插基线间的垂直距离,如bi。

峰面积:指峰和内插基线之间所包围的面积。

外延始点:指峰的起始边陡峭部分的切线与外延基线的交点。如J点。

在DTA曲线中,峰的出现是连续渐变的。由于在测试过程中试样表面的温度高于中心的温度,所以放热的过程由小变大,形成一条曲线。在DTA的a点,吸热反应主要在试样表面进行,但a点的温度并不代表反应开始的真正温度,而仅是仪器检测到的温度,这与仪器的灵敏度有关。

峰温无严格的物理意义,一般来说峰顶温度并不代表反应的终止温度,反应的终止温度应在bd线上的某一点。最大的反应速率也不发生在峰顶而是在峰顶之前。峰顶温度仅表示试样和参比物温差最大的一点,而该点的位置受试样条件的影响较大,所以峰温一般不能作为鉴定物质的特征温度,仅在试样条件相同时可作相对比较。

国际热分析协会ICTA对大量的试样测定结果表明,外延起始温度与其他实验测得的反应起始温度最为接近,因此ICTA决定用外延起始温度来表示反应的起始温度。

差热曲线的影响因素

差热分析是一种热动态技术,在测试过程中体系的温度不断变化,引起物质的热性能变化,因此,许多因素都可影响DTA曲线的基线、峰形和温度。归纳起来,影响DTA曲线的主要因素有下列几方面:

仪器方面的因素:包括加热炉的形状和尺寸、坩埚材料及大小形状、热电偶性能及其位置、显示、记录系统精度等。

试样因素:包括试样的热容量、热导率和试样的纯度、结晶度或离子取代以及试样的颗粒度、用量及装填密度、参比物的影响等。

实验条件:包括加热速度、气氛和压力等。

仪器方面因素

对于实验人员来说,仪器通常是固定的,一般只能在某些方面,如坩埚或热电偶等方面作有限的选择。但是在分析不同仪器获得的实验结果或考虑仪器更新时,仪器因素却是不容忽视的。

(1) 炉子的结构和尺寸

炉子的均温区与炉子的结构和尺寸有关,而差热基线又与均温区的好坏有关,因此炉子的结构尺寸合理,均温区好,差热基线直,检测性能也稳定。一般而言,炉子的炉膛直径越小、长度越长,均温区就越大、且均温区内的温度梯度就越小。

(2) 坩埚材料和形状

坩埚材料包括铝、不锈钢、铂金等金属材料和石英、氧化铝、氧化铍等非金属材料两类,其传热性能各不相同。金属材料坩埚的热导性能好,基线偏离小,但灵敏度较低,峰谷较小。非金属材料坩埚的热传导性能较差,容易引起基线偏离,但灵敏度较高,较少的样品就可获得较大的差热峰谷。坩埚的直径大,高度矮,试样容易反应,灵敏度高,峰形也尖锐。

(3)热电偶性能与位置

热电偶的性能会影响差热分析的结果。热电偶的接点位置、类型和大小等因素都会对差热曲线的峰形、峰面积及峰温等产生影响。此外,热电偶在试样中的位置不同,也会使热峰产生的温度和热峰面积有所改变。这是因为物料本身具有一定的厚度,因此表面的物料其物理化学过程进行得较早,而中心部分较迟,使试样出现温度梯度。试验表明将热电偶热端置于坩埚内物料的中心点时可获得最大的热效应。因此,热电偶插入试样和参比物时,应具有相同的深度。

试样方面因素

(1)热容量和热导率变化

试样的热容量和热导率的变化会引起差热曲线的基线变化。一台性能良好的差热仪的基线应是一条水平直线,但试样差热曲线的基线在热反应的前后往往不会停留在同一水平上。这是由于试样在热反应前后热容或热导率变化的缘故。如附图中图中(a)所示反应前基线低于反应后基线,表明反应后热容减小。(b)所示反应前基线高于反应后基线,表明反应后试样热容增大。反应前后热导率的变化也会引起基线有类似的变化。

当试样在加热过程中热容和热导率都发生变化,而且在加热速度较大,灵敏度较高的情况下,差热曲线的基线随温度的升高可能会有较大的偏离。

(2)试样的颗粒度、用量及装填密度

试样的颗粒度、用量及装填密度与试样的热传导和热扩散性能有密切关系,还与研究对象的化学过程有关。

对于表面反应和受扩散控制的反应来说,颗粒的大小会对差热曲线有显著的影响。对于有气相参加的反应来说都要经过试样颗粒表面进行,因此粒度越小其表面积越大,反应速度加快,峰温向低温方向移动;但另一方面,又因细粒度装填妨碍了气体扩散,使粒间分压变化,峰形扩张,峰温又要向高温方向移动;可见粒度对峰形和峰温都有影响,在测试中应尽量采用粒度一样的试样。对于一些存在多重反应的样品来说,过粗或过细的粒度引起的峰温偏移还有可能掩盖附近的某些小反应,因此应该选用合适的粒度范围。

试样用量的多少对差热曲线有着类似的影响,试样用量多,热效应大,峰顶温度滞后,容易掩盖邻近小峰谷。特别是对在反应过程中有气体放出的热分解反应,试样用量影响气体到达试样表面的速度。

试样的装填疏密即试样的堆积方式,决定着等量试样体积的大小。在试样用量、颗粒度相同的情况下,装填疏密不同也影响产物的扩散速度和试样的传热快慢,因而影响DTA曲线的形态。通常都采用紧密装填方式

对几个试样进行对比分析时应保持相同的粒度、用量和装填疏密,并和参比物的粒度、用量和装填疏密及其热性能尽可能保持一致。一般在测试时,试样的粒度均通过100-300目筛,如是聚合物应切成小片,纤维状试样应切成小段或制成球粒状,金属试样应加工成小圆片或小块等。

(3)试样的结晶度、纯度

Carthew等研究了试样的结晶度对差热曲线的影响,发现结晶度不同的高岭土样品吸热脱水峰面积随样品结晶度的减小而减小,随结晶度的增大,峰形更尖锐。通常也不难看出,结晶良好的矿物,其结构水的脱出温度相应要高些,如结晶良好的高岭土600℃脱出结构水,而结晶差的高岭土560℃就可脱出结构水。

天然矿物都含有各种各样的杂质,含有杂质的矿物与纯矿物比较,其差热曲线形态、温度都可能不相同。杨惠仙等研究了杂质对二水石膏的差热曲线的影响,发现混入二水石膏中的晶态SiO2、非晶态 SiO2、CaCO3、Al2O3和高岭土等杂质均会改变二水石膏的热性能。降低二水石膏的脱水温度,加快脱水速度,使二水石膏的起始脱水温度由 l12℃依次降为102.8℃、102.2℃、98.7℃、105℃、93.8℃。

(4)参比物

参比物是在一定温度下不发生分解、相变、破坏的物质,是在热分析过程中起着与被测物质相比较用的标准物质。从差热曲线原理中可以看出,只有当参比物和试样的热性质、质量、密度等完全相同时才能在试样无任何类型能量变化的相应温度区内保持温差为零,得到水平的基线,实际上这是不可能达到的。与试样一样,参比物的导热系数也受许多因素影响,例如比热容、密度、粒度、温度和装填方式等,这些因素的变化均能引起差热曲线基线的偏移。因此,为了获得尽可能与零线接近的基线,需要选择与试样导热系数尽可能相近的参比物。对于粘土类或一般硅酸盐物质,可选用α-Al2O3(经1450℃以上煅烧2-3小时)或高岭土熟料(经1200℃左右煅烧的纯高岭土)。

因此,要测好一根被测物质的差热曲线,必须注意选择热传导和热容与试样尽量接近的物质作参比物,有时为了使试样的导热性能与参比物相近,可在试样中添加适量的参比物使试样稀释;试样和参比物均应控制相同的粒度;装入坩埚的致密程度、热电偶插入深度也应一致。

实验条件

(1) 升温速度

在差热分析中,升温速度的快慢对差热曲线的基线、峰形和温度都有明显的影响。升温越快,更多的反应将发生在相同的时间间隔内,峰的高度、峰顶或温差将会变大,因此出现尖锐而狭窄的峰。同时,不同的升温速度还会明显影响峰顶温度。附图右图显示了不同加热速度下高岭土脱水反应的差热曲线形态和温度。从图中可见,随着升温速度的提高,峰形变得尖而窄、形态拉长,峰温增高。升温速度低时,峰谷宽、矮,形态扁平,峰温降低。升温速度不同还会影响相邻峰的分辨率,较低的升温速度率使相邻峰易于分开,而升温速率太快容易使相邻峰谷合并。一般常用的升温速率为1-10K?min-1。

(2)炉内压力和气氛

压力对差热反应中体积变化很小的试样影响不大,而对于体积变化明显的试样则影响显著。在外界压力增大时,试样的热反应温度向高温方向移动。而当外界压力降低或抽真空时,热反应的温度向低温方向移动。

炉内气氛对碳酸盐、硫化物、硫酸盐等类矿物加热过程中的行为有很大影响,某些矿物试样在不同的气氛控制下,会得到完全不同的差热分析曲线。试验表明,炉内气氛的气体与试样的热分解产物一致时,分解反应所产生的起始、终止和峰顶温度趋向增高。

通常进行气氛控制有两种形式:一种是静态气氛,一般为封闭系统;随着反应的进行,样品上空逐渐被分解出来的气体所包围,将导致反应速度减慢,反应温度向高温方向偏移。另一种是动态气氛,气氛流经试样和参比物,分解产物所产生的气体不断被动态气氛带走。只要控制好气体的流量就能获得重现性好的实验结果。

采暖方式-电辐热是什么?

地面辐射供暖也是通常说的地暖,通俗的说,地面辐射供暖是正式的名称,地暖则是其简称。地热辐射采暖是将温度不高于60摄氏度的热水或发热电缆,暗埋在地热地板下的盘管系 电地暖统内加热整个地面,通过地面均匀地向室内辐射散热的一种采暖方式。 [编辑本段]背景 地面低温辐射供暖技术自50年代以来就已经在整个欧洲、北美(美国北部及加拿大)广泛使用至今,其历史可以最远追溯到罗马帝国时期,那时人们将地下温泉引入地下的管槽,在 电地暖大理石地面下循环发热取暖。在我国古代的皇宫中也曾有类似的应用。 地面低温辐射电采暖系统是目前国际上最为舒适、健康并且日益普及的采暖方式,使用寿命为50年以上,您可以选择在家里全部区域使用地暖系统,同时也可以选择在部分区域(如卧室、大厅)使用。目前电热地暖系统已经在欧洲、北美的广大地区得到了广泛的接受和认可;随着我国人民生活水平的提高,该种新兴的采暖方式在国内也有了越来越多的应用。地暖开始走入人们的家居生活。。。 [编辑本段]采暖原理 电地暖以发热电缆为发热体,用以铺设在各种地板、瓷砖、大理石等地面材料下,再配上智能温控器系统,使其形成舒适环保、高效节能、不需要维护、各房间独立使用、寿命特长,隐蔽式的地面供暖系统。 构成 发热电缆,远红外辐射电热膜(目前最先进的)温控器,地面辅材 电地暖。 该取暖方式,广泛用于高档别墅,以电为能源,由电能直接转换成热能,热效率基本为100%,以辐射方式传递热量,具有舒适,节能,安全环保等特点。 工作原理 发热电缆通电后,导体工作温度控制在40度---70度,通过地面(10度---35度)作为散热面,以辐射的方式向地面以上传递,使其表面温度升高,达到提高及保持室温的目的。 室内温度均匀,各处温度可按需调节,各个房间可自由、单独控制,节约能源;无噪音,无污染;智能运行,耗能低,热辐射供暖,效率高;不占用室内、室外任何空间。 系统可靠性、安全性高,不易损坏,无需维护使用寿命50年以上,一次安装,终身使用,免维护,免维修,没有裸露的散热管网和暖气片,节省空间,相对增大面积3%---5%,室内仅见漂亮的温控器,清洁、卫生、不干燥,犹如阳光般的温暖。 取暖方式 热源从脚底开始自下而上,符合人体生理学原理,促进正常新陈代谢,取暖方式自然 电地暖柔和.远红外线波长深入人体内部,使皮下深层组织温度上升,微血管扩张,促进血液循环,还能起到活化细胞、增强免疫力的作用. 低温辐射地板采暖是通过埋设于地板下的加热管——铝塑复合管或导电管,把地板加热到表面温度18至32摄氏度,均匀地向室内辐射热量而达到采暖效果。 [编辑本段]优势 相较于传统取暖方式,电地暖有以下优势: 首先,房间温度分布均匀。采用地板采暖方式,由于是整个地板均匀散热 电地暖,因此房间里的温差极小。而且室内温度是由下而上逐渐降低,地面温度高于人的呼吸系统温度,给人以脚暖头凉的舒适感觉。 首先,房间温度分布均匀。采用地板采暖方式,由于是整个地板均匀散热,因此房间里的温差极小。而且室内温度是由下而上逐渐降低,地面温度高于人的呼吸系统温度,给人以脚暖头凉的舒适感觉。 第二,有利于营造健康的室内环境。采用散热片取暖,一般出水温度在7摄氏度以上,但温度达到8度时就会产生灰尘团,使暖气上方的墙面布满灰尘。而地板采暖可以消除灰尘团和浑浊空气的对流,给人一个清新、温暖、健康的环境。 第三,高效节能。由于采暖的辐射面大,相对要求的供水温度低,只需4至5度。而且可以克服传统采暖片一部分热量 [编辑本段]分类分类一 目前市场上地面辐射供暖方式有低温热水地面辐射供暖系统、发热电缆地面辐射供暖系统、电热膜地面供暖系统,但电热膜地面供暖系统,由于技术尚未成熟,目前国内无国家规范。 “低温热水地面供暖”以温度不高于60℃的热水为热媒,以埋设在地板填充层 电地暖内的加热盘管内热水循环流动,将地板加热,通过地面以辐射和对流的传热方式向室内供热,从而达到采暖的目的; “发热电缆地面辐射供暖”系统是以电力为能源,发热电缆为发热体,将电能转换为热能,并以建筑物室内地面作为散热面,通过地面以辐射和对流的传热方式向室内供热的供暖方式。 分类二 电采暖在我国的新供暖方式,从电热膜、地热电缆的间接供暖到各种直接电热的电暖器产品于供暖事业是相得益彰的补充作用。电采暖家族可简单分为以下几个类型: 直接电热:壁挂式及安装在室内电暖器属于直接电热产品,其热量利用外表材料辐射扩散或以对流传热原理发出热量,直接加热室内空气,室内升温迅速,能够方便快捷的通过开停电控制室温,直热电暖器配合温控装置形成电采暖供暖系统,该系统可以满足人的即时需要. 间接电热:电热膜,地热电缆供暖可视为间接电热方式,电热膜和地热电缆分别在房间的天棚内和地板下隐藏安装,其热量依靠天棚石膏板和地板材料受热后缓慢散发,间接加热室内空气予以供暖。电热膜、地热电缆产品供热符合地暖保健原理,给人有感觉舒适的优点,被高档的住宅所运用。 蓄热式电暖器; 蓄热式电暖器设计初衷是利用峰谷电差价错峰用电达到降低电费目的的电热设备,谷底时间段8小时利用二倍热负荷功率电热管发出热量充热蓄热砖,利用蓄热砖储存的热量支持全天的供暖,实际上,蓄热砖储存的热量在不能有效控制下连续放热,根本达不到16小时的连续有效供暖,尚需继续充电加热而加大电能消耗。电暖器内部最高温度可达900℃影响电热管使用寿命,该设备功率大,体积大,能耗大,热量控制性能差,少有行为节能空间,供暖费用高,在未执行峰谷电价地区就更无意义了。 [编辑本段]选择 就电地暖来说核心部分是发热电缆,那如何选择好的发热电缆呢,主要是几个方面。一是看外观,光滑和平整先不说电缆上有商标,规格,型号,电阻,生产等,字要是机器喷上去的,而且应该有类似盲文一样的暗纹。 结构上由内到外要有:发热丝(实芯的粗细)——交联聚乙烯的绝缘层(透明度)——接地线———屏蔽外套.看接头,这也是发热电缆的一个技术难点。目前进口电缆中以热缩管的接头为主,技术成熟,所以稳定性和耐水性等相对好些,目前也出现了一些其他类型的接头,但在实际运用中还需要长期的考验。 [编辑本段]行业概况 地暖市场步入成熟发展期,地暖公司日益成熟壮大,地暖市场逐步形成了 电地暖专业化,规模化的局面,这种采暖方式的兴起,为居住功能增添了舒适、温馨、环保、时尚的家居,被社会所认可。 尽管国家已出台了相关的行业标准,可目前,地暖行业依旧存在这 这样或那样的问题,随着地暖行业的进一步成熟,更为充分的竞争,诸如下列问题的企业,可能会被淘汰, 1、有规不遵,随心所欲 2、重价格,轻质量 3、售后服务滞后,用户心存余悸 这些,都影响了地暖行业的健康发展,更影响到社会对地暖的热情和信心。 作为一个新兴行业,只有注重对地暖材料施工质量和管理执行严格的规程,从地暖的设计、选材、采购、保管、施工、安全、验收,调试,验收每个环节都严格把关,认真操作,才最终在市场优胜劣汰的竞争中胜出。 [编辑本段]安装标准 电地暖施工流程和水地暖一样,电地暖地面部分安装完成后只要在室内墙壁上装一个 电地暖温控器,水地暖地面部分安装完成后还需要锅炉和分水器。 电地暖安全性也不必担心,它是经过4000伏高压做过检测,家用电压才220伏左右,发热体有双层保护,而且还有防电磁波屏蔽接地保护,万一有漏电的可能您家里的总电源会马上断电,产品质量保证期长达30年,电地暖在中国及世界各地都有大型建筑场所工程案例。 电地暖上面装饰层可以选择:地砖、大理石、实木复合地板、实木地板。

高温熔盐储能原理?

熔融盐蓄电池是指以熔融盐为电解质的蓄电池。电池工作温度在300~600℃之间,故又称高温电池。

锂铁电池工作时,原理如下:

负极被氧化:Li → Li+ + e

正极被还原:FeS2 + 4e → Fe + 2S2-

总放电反应:FeS2 +4Li → Fe + 2 Li2S

锂铝合金-二硫化铁(Li-Al/FeS2)电池的总反应为:

其平均电动势为1.55V。

扩展资料

早期研究的熔融盐蓄电池是锂-硫族电池,而进展最快的是锂铅合金-硫化铁电池。这类电池的比能量高,可用较大的功率放电,用作汽车动力电池和储能电池。

电压下降时,它供给的无功功率也减小,因此,在电网发生故障或其它原因而使电压下降时,其输出的无功功率反而减少,结果导致电网电压继续下降,这是静电电容器的缺点。

锂铝合金负极一般使用含50%锂的锂铝合金粉末灌入兼作集流体的多孔金属结构中。正极所用二硫化铁的导电性低。需渗入铁粉或碳粉以增加其导电性能,用多孔石墨、多碳泡沫体、钼、钨等作集流体。

电解质为LiCl-KCl共熔体,熔点为352℃。隔板除起隔离正、负极,保持电解质的作用外,还要求在450℃时有稳定性,能抗锂铝合金和二硫化铁的侵蚀,多用氧化钇石棉纸、氮化硼毡、氧化钇毡  。

参考资料来源:百度百科-熔融盐蓄电池

关于峰谷差盐加热供暖和电采暖峰谷的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除