今天给各位分享分摊权值的知识,其中也会对按比例分摊进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录:
什么是BP算法
误差反向传播(Error Back Propagation, BP)算法
1、BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
1)正向传播:输入样本-输入层-各隐层(处理)-输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)-隐层(逐层)-输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
BP算法基本介绍
含有隐层的多层前馈网络能大大提高神经网络的分类能力,但长期以来没有提出解决权值调整问题的游戏算法。1986年,Rumelhart和McCelland领导的科学家小组在《Parallel Distributed Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播(Error Back Proragation,简称BP)算法进行了详尽的分析,实现了Minsky关于多层网络的设想。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传人,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
matlab神经网络工具箱训练出来的函数,怎么输出得到函数代码段
这样:
clear;
%输入数据矩阵
p1=zeros(1,1000);
p2=zeros(1,1000);
%填充数据
for i=1:1000
p1(i)=rand;
p2(i)=rand;
end
%输入层有两个,样本数为1000
p=[p1;p2];
%目标(输出)数据矩阵,待拟合的关系为简单的三角函数
t = cos(pi*p1)+sin(pi*p2);
%对训练集中的输入数据矩阵和目标数据矩阵进行归一化处理
[pn, inputStr] = mapminmax(p);
[tn, outputStr] = mapminmax(t);
%建立BP神经网络
net = newff(pn, tn, [200,10]);
%每10轮回显示一次结果
net.trainParam.show = 10;
%最大训练次数
net.trainParam.epochs = 5000;
%网络的学习速率
net.trainParam.lr = 0.05;
%训练网络所要达到的目标误差
net.trainParam.goal = 10^(-8);
%网络误差如果连续6次迭代都没变化,则matlab会默认终止训练。为了让程序继续运行,用以下命令取消这条设置
net.divideFcn = '';
%开始训练网络
net = train(net, pn, tn);
%训练完网络后要求网络的权值w和阈值b
%获取网络权值、阈值
netiw = net.iw;
netlw = net.lw;
netb = net.b;
w1 = net.iw{1,1}; %输入层到隐层1的权值
b1 = net.b{1} ; %输入层到隐层1的阈值
w2 = net.lw{2,1}; %隐层1到隐层2的权值
b2 = net.b{2} ; %隐层1到隐层2的阈值
w3 = net.lw{3,2}; %隐层2到输出层的权值
b3 = net.b{3} ;%隐层2到输出层的阈值
%在默认的训练函数下,拟合公式为,y=w3*tansig(w2*tansig(w1*in+b1)+b2)+b3;
%用公式计算测试数据[x1;x2]的输出,输入要归一化,输出反归一化
in = mapminmax('apply',[x1;x2],inputStr);
y=w3*tansig(w2*tansig(w1*in+b1)+b2)+b3;
y1=mapminmax('reverse',y,outputStr);
%用bp神经网络验证计算结果
out = sim(net,in);
out1=mapminmax('reverse',out,outputStr);
扩展资料:
注意事项
一、训练函数
1、traingd
Name:Gradient descent backpropagation (梯度下降反向传播算法 )
Description:triangd is a network training function that updates weight and bias values according to gradient descent.
2、traingda
Name:Gradient descent with adaptive learning rate backpropagation(自适应学习率的t梯度下降反向传播算法)
Description:triangd is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate. it will return a trained net (net) and the trianing record (tr).
3、traingdx (newelm函数默认的训练函数)
name:Gradient descent with momentum and adaptive learning rate backpropagation(带动量的梯度下降的自适应学习率的反向传播算法)
Description:triangdx is a network training function that updates weight and bias values according to gradient descent momentum and an adaptive learning rate.it will return a trained net (net) and the trianing record (tr).
4、trainlm
Name:Levenberg-Marquardt backpropagation (L-M反向传播算法)
Description:triangd is a network training function that updates weight and bias values according toLevenberg-Marquardt optimization. it will return a trained net (net) and the trianing record (tr).
注:更多的训练算法请用matlab的help命令查看。
二、学习函数
1、learngd
Name:Gradient descent weight and bias learning function (梯度下降的权值和阈值学习函数)
Description:learngd is the gradient descent weight and bias learning function, it will return the weight change dW and a new learning state.
2、learngdm
Name:Gradient descent with momentum weight and bias learning function (带动量的梯度下降的权值和阈值学习函数)
Description:learngd is the gradient descent with momentum weight and bias learning function, it will return the weight change dW and a new learning state.
注:更多的学习函数用matlab的help命令查看。
三、训练函数与学习函数的区别
函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。
或者这么说:训练函数是全局调整权值和阈值,考虑的是整体误差的最小。学习函数是局部调整权值和阈值,考虑的是单个神经元误差的最小。
它的基本思想是学习过程由信号的正向传播与误差的反向传播两个过程组成。
正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。
反向传播时,将输出以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。
什么是反向误差
误差反向
什么是误差反向传播算法[1]
自从40年代赫布(D.O. Hebb)提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。是用于多层神经网络训练的著名算法,有理论依据坚实、推导过程严谨、物理概念清楚、通用性强等优点.但是,人们在使用中发现BP算法存在收敛速度缓慢、易陷入局部极小等缺点.
误差反向传播算法的思想[2]
BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
1)正向传播:输入样本-输入层-各隐层(处理)-输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)-隐层(逐层)-输入层其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。
误差反向传播算法的实现步骤[2]
1)初始化
2)输入训练样本对,计算各层输出
3)计算网络输出误差
4)计算各层误差信号
5)调整各层权值
6)检查网络总误差是否达到精度要求
满足,则训练结束;不满足,则返回步骤2。
误差反向传播算法的缺陷[2]
1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;
2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);
3)隐节点的选取缺乏理论支持;
4)训练时学习新样本有遗忘旧样本趋势。
关于分摊权值和按比例分摊的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。