首页 生活常识 正文

储能容量计算峰谷(峰谷储能项目方案)

我了解的政策如下从20211年1月1日起执行)  一、峰谷分时电价执行范围  湖北电网用电容量在100千伏安及以上的工商业及其他用电(单一制和两部制)执行峰谷分时电价,电热锅炉、冰(水)蓄冷空调等电储能用电执行峰谷分时电价。同期湖北省电网销售电价表所列电度电价:作为峰谷分时电价计算的基础电价:通过电化学电池或电磁能量存储介质进行可循环...

本文目录

武汉峰平谷电价?

我了解的政策如下 从20211年1月1日起执行)

一、峰谷分时电价执行范围

湖北电网用电容量在100千伏安及以上的工商业及其他用电(单一制和两部制)执行峰谷分时电价,商业用电和机关、部队、学校、医院、城市公共照明等非居民照明用电除外。电热锅炉、冰(水)蓄冷空调等电储能用电执行峰谷分时电价。

国家和湖北省现行政策文件对峰谷分时电价实施对象另有单独规定的按规定执行。

二、峰谷分时电价峰、平、谷时段划分

尖峰时段:20:00-22:00(共2小时)

高峰时段:9:00-15:00(共6小时)

平????段:7:00-9:00、15:00-20:00、22:00-23:00(共8小时)

低谷时段:23:00-次日7:00(共8小时)

三、峰谷分时电价价差

基础电价:同期湖北省电网销售电价表所列电度电价,扣除政府性基金及附加,作为峰谷分时电价计算的基础电价。

平段电价=基础电价+政府性基金及附加

尖峰电价=基础电价×180%+政府性基金及附加

高峰电价=基础电价×149%+政府性基金及附加

低谷电价=基础电价×48%+政府性基金及附加

储能电站是怎么建成的?

通过电化学电池或电磁能量存储介质进行可循环电能存储、转换及释放的设备系统。[1]

主要功能:调节峰谷用电问题

主要存储手段:1,抽水储能电站;2,超大型电池组

中文名

储能电站

主要功能

调节峰谷用电问题

主要存储手段

抽水储能电站、储能电池抽水储能电站安装有抽水—发电两用机组,又能抽水,又能发电。在白天和前半夜,水库放水,高水位的水通过两用机组,此时两用机组作为发电机,将高水位的水的机械能转化为电能,向电网输送。解决用电高峰时电力不足;到后半夜,电网处于用电低谷,电网中不能储存电能,这时将两用机组作为抽水机(两用机组可作反向旋转),利用电网中多余的电能,将低水位的水抽向高水位,并注入高水位的水库中,这样,在用电低谷时把电网中多余的电能转化为水的机械能储存在水库中。到用电高峰,水库放水,又将水的机械能,通过发电机转化为电能,向电网输送。水库中的水多次使用,与两机组一起,完成能量的多次转化。高水位水库储存了大量低水位的水,相当于储存电网中多余的电能,解决了电能不能储存的问题。由于用电高峰和低谷的电价不同,高峰电价高,低谷电价低,这样使抽水蓄电站的经济效益也大大提高了。

作用

调峰作用

峰谷电价分别时间是多少?

居民生活用电峰段由原来的每日8:00时至22:00时调整为每日8:00时至20:00时,峰段时间缩短2小时,加价标准仍维持原水平每千瓦时0.05元;居民生活用电谷段由原来的每日22:00时至次日8:00时调整为每日20:00时至次日8:00时,谷段时间延长2小时,降价标准维持原水平每千瓦时0.2元。我省居民生活用电峰谷时段调整较好地适应群众生活用电习惯,引导鼓励居民用户参与电力移峰填谷,满足居民电采暖、电储能等个性化用电需求,充分利用谷段低电价政策支持“煤改电”工作深入推进。

储能技术的重要性和主要功能?

在电网中,储能技术所发挥的作用主要体现在以下几方面:

1)削峰填谷。电力需求在白天和黑夜、不同季节间存在巨大的峰谷差。储能可以有效地实现需求侧管理,发挥削峰填谷的作用,消除昼夜峰谷差,改善电力系统的日负荷率,大大提高发电设备的利用率,从而提高电网整体的运行效率,降低供电成本。

2)改善电能质量、提高可靠性。借助于电力电子变流技术,储能技术可以实现高效的有功功率调节和无功控制,快速平衡系统中由于各种原因产生的不平衡功率,调整频率,补偿负荷波动,减少扰动对电网的冲击,提高系统运行稳定性,改善用户电能质量。

3)改善电网特性、满足可再生能源需要。储能装置具有转换效率高且动作快速的特点,能够与系统独立进行有功、无功的交换。将储能设备与先进的电能转换和控制技术相结合,可以实现对电网的快速控制,改善电网的静态和动态特性,满足可再生能源系统的需要。

除了智能电网、储能还是可再生能源接入、分布式发电、微电网以及电动汽车发展中必不可少的支撑技术。目前其应用主要涉及:1)配置在电源侧,平滑短时出力波动,跟踪调度计划出力,实现套利运行,提高可再生能源发电的确定性、可预测性和经济性;2)配置在系统侧,实现削峰填谷、负荷踪、调频调压、热备用、电能质量治理等功能,提高系统自身的调节能力;3)配置在负荷侧,主要利用电动汽车的储能形成虚拟电厂参与可再生能源发电调控。储能技术正朝着转换高效化、能量高密度化和应用低成本化方向发展,通过试验示范和实际运行日趋成熟,确保了系统安全、稳定、可靠的运行。

根据能量存储方式的不同,储能方式分为机械、电磁、电化学和相变储能四大类型。其中机械储能包括抽水蓄能、压缩空气储能和飞轮储能;电磁储能包括超导、超级电容和高能密度电容储能;电化学储能包括铅酸、镍氢、镍镉、锂离子、钠硫和液流等电池储能;相变储能包括熔融盐和冰蓄冷储能等。

各种储能技术在能量和功率密度等方面有着明显区别,能量型储能装置因其能量密度高、充放电时间较长,主要用于平滑低频输出分量;功率型储能装置因功率密度大、响应快,主要用于平滑高频输出分量。在各种储能技术中,抽水蓄能和压缩空气储能比较适用于电网调峰;电池储能比较适用于中小规模储能和新能源发电;超导电磁储能和飞轮储能比较适用于电网调频和电能质量保障;超级电容器储能比较适用于电动汽车储能和混合储能。

关于储能技术能否在电力系统中得到推广应用,取决于储能技术是否能够达到一定的储能规模等级,是否具备适合工程化应用的设备形态,以及是否具有较高的安全可靠性和技术经济性。

本文转载自互联网,如有侵权,联系删除