首页 开发编程 正文

php 验证码怎么写

前端可以使用js读取json数据结果展示到网站上!android网络编程HttpPost等相关知识接受web服务器模拟发送的验证码方案三:...

php 验证码怎么写,是否有可能用JS替代JSON?

外行?理论上,js是一种脚本语言(JavaScript),json(JavaScriptObject Notation, JS 对象简谱)是一种轻量级数据交换格式,是js的一个子集,没有替代不替代一说,后端语言php、java等开发的api接口,返回json标准格式数据,便于前端调用,前端可以使用js读取json数据结果展示到网站上!为什么是json,因为json是一个标准的数据交互格式,大部分语言都可以读取json数据,这样的话就可以开发多端,比如流行的微信小程序、app、网站三端,同步数据!

安卓应用的手机号注册登录是如何实现的?

自己学习使用的话方法有三种:

方案一: 直接后台用随机函数生成6位数字,调用发短信功能给自己手机发就行.方案二: XAMPP或者其他软件 搭建一个免费的web服务器,android网络编程Http Post等相关知识接受web服务器模拟发送的验证码方案三: 个人直接搞移动、联通、电信接口貌似不太好搞 所以推荐可找第三方短信公司平台客服要下接口文档和和几条试用的测试短信即可。 第三方短信发送平台 这个可以自己百度下。

如何评估数据适不适合放入Redis中?

如果项目中业务需求对数据库进行高并发的读写、海量数据高效的访问以及存储、对数据库有着较高的扩展性、高可用性要求都可以优先考虑使用Redis。

目前Redis凭借其优秀的读写性能、支持数据的持久化、丰富的数据类型、诸多便利的特性以及服务器端的良好扩展并易于运维,在NoSql阵营中脱颖而出,成为了一颗闪耀之星!深受开发人员以及企业的青睐,已经成为后台开发人员武器库中必不可缺的技术之一。

接下来结合其特性谈谈Redis适用的业务场景有哪些:

数据缓存:

这是NoSql技术相对传统的关系型数据库来说最具备优势的一个领域,对于一些读取非常频繁的数据完全可以放到Redis提供给系统功能访问。例如:token信息、用户身份信息(唯一性验证)、高频缓存数据(坐标、位置、地理信息)、短信验证码、搜索关键字、订单信息等都可以使用Redis进行存储。

统计:

在项目中我们经常会遇到一些需要记录与统计某项的数据,此类数据一般都非常庞大,如果存放在数据库中可以满足我们的需求,但是得不偿失、非常不划算!例如:文章阅读统计、排行榜、网站计数器、投票、作品点赞量等等。

记录关系:

目前非常流行的短视频平台,例如抖音、快手等用户关注、被关注、相同关注等均可以使用Redis来进行存储简单而明了,避免了数据库中数据的冗余与访问、存储压力!

总结一下:

无论是关系型数据库,还是Nosql数据库都有着各自的优势以及适用的场景,在项目中要合理的设计、分配它们所扮演的角色,通过它们之间的紧密合作在项目中发挥其最大的优势!

微信网页版登录入口?

1、电脑浏览器地址输入wx点qq点com,回车进入微信网页版登录页;

2、手机打开登录自己微信,打开扫一扫功能,扫描网页版上的二维码;

3、然后手机点击确定,即可成功登录微信网页版,网页就会自动读取你微信信息;

4、登录成功后,你就可以通过网页来操作自己微信的一些基础功能(发送消息、图片、文件等)。

绑定手机号如果手机号不见了,那只能求助微信官方客服,因为没手机号,你登录的时候就要发送验证码,那你就不知道验证码是什么了,那你就不能登录,所以只能求助官方,自己搞不定。

Python爬虫和数据分析需要哪些知识储备?

数据是决策的原材料,高质量的数据价值不菲,如何挖掘原材料成为互联网时代的先驱,掌握信息的源头,就能比别人更快一步。

大数据时代,互联网成为大量信息的载体,机械的复制粘贴不再实用,不仅耗时费力还极易出错,这时爬虫的出现解放了大家的双手,以其高速爬行、定向抓取资源的能力获得了大家的青睐。

爬虫变得越来越流行,不仅因为它能够快速爬取海量的数据,更因为有python这样简单易用的语言使得爬虫能够快速上手。

对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情,但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。

基于python爬虫,我们整理了一个完整的学习框架:

筛选和甄别学习哪些知识,在哪里去获取资源是许多初学者共同面临的问题。

接下来,我们将学习框架进行拆解,分别对每个部分进行详细介绍和推荐一些相关资源,告诉你学什么、怎么学、在哪里学。

爬虫简介

爬虫是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。

这个定义看起来很生硬,我们换一种更好理解的解释:

我们作为用户获取网络数据的方式是浏览器提交请求->下载网页代码->解析/渲染成页面;而爬虫的方式是模拟浏览器发送请求->下载网页代码->只提取有用的数据->存放于数据库或文件中。

爬虫与我们的区别是,爬虫程序只提取网页代码中对我们有用的数据,并且爬虫抓取速度快,量级大。

随着数据的规模化,爬虫获取数据的高效性能越来越突出,能够做的事情越来越多:

市场分析:电商分析、商圈分析、一二级市场分析等市场监控:电商、新闻、房源监控等商机发现:招投标情报发现、客户资料发掘、企业客户发现等

进行爬虫学习,首先要懂得是网页,那些我们肉眼可见的光鲜亮丽的网页是由HTML、css、javascript等网页源码所支撑起来的。

这些源码被浏览器所识别转换成我们看到的网页,这些源码里面必定存在着很多规律,我们的爬虫就能按照这样的规律来爬取需要的信息。

无规矩不成方圆,Robots协议就是爬虫中的规矩,它告诉爬虫和搜索引擎哪些页面可以抓取,哪些不可以抓取。

通常是一个叫作robots.txt的文本文件,放在网站的根目录下。

轻量级爬虫

“获取数据——解析数据——存储数据”是爬虫的三部曲,大部分爬虫都是按这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

1、获取数据

爬虫第一步操作就是模拟浏览器向服务器发送请求,基于python,你不需要了解从数据的实现,HTTP、TCP、IP的网络传输结构,一直到服务器响应和应达的原理,因为python提供了功能齐全的类库来帮我们完成这些请求。

Python自带的标准库urllib2使用的较多,它是python内置的HTTP请求库,如果你只进行基本的爬虫网页抓取,那么urllib2足够用。

Requests的slogen是“Requests is the only Non-GMO HTTP library for Python, safe for humanconsumption”,相对urllib2,requests使用起来确实简洁很多,并且自带json解析器。

如果你需要爬取异步加载的动态网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化。

对于爬虫来说,在能够爬取到数据地前提下当然是越快越好,显然传统地同步代码不能满足我们对速度地需求。

(ps:据国外数据统计:正常情况下我们请求同一个页面 100次的话,最少也得花费 30秒,但使用异步请求同一个页面 100次的话,只需要要 3秒左右。)

aiohttp是你值得拥有的一个库,aiohttp的异步操作借助于async/await关键字的写法变得更加简洁,架构更加清晰。使用异步请求库进行数据抓取时,会大大提高效率。

你可以根据自己的需求选择合适的请求库,但建议先从python自带的urllib开始,当然,你可以在学习时尝试所有的方式,以便更了解这些库的使用。

推荐请求库资源:

urllib2文档:https://dwz.cn/8hEGdsqDrequests文档 :http://t.cn/8Fq1aXrselenium文档:https://dwz.cn/DlL9j9hfaiohttp文档:https://dwz.cn/hvndbuB4

2、解析数据

爬虫爬取的是爬取页面指定的部分数据值,而不是整个页面的数据,这时往往需要先进行数据的解析再进行存储。

从web上采集回来的数据的数据类型有很多种,主要有HTML、 javascript、JSON、XML等格式。解析库的使用等价于在HTML中查找需要的信息时时使用正则,能够更加快捷地定位到具体的元素获取相应的信息。Css选择器是一种快速定位元素的方法。Pyqurrey使用lxml解析器进行快速在xml和html文档上操作,它提供了和jQuery类似的语法来解析HTML文档,支持CSS选择器,使用非常方便。

Beautiful Soup是借助网页的结构和属性等特性来解析网页的工具,能自动转换编码。支持Python标准库中的HTML解析器,还支持一些第三方的解析器。

Xpath最初是用来搜寻XML文档的,但是它同样适用于HTML文档的搜索。它提供了超过 100 个内建的函数。这些函数用于字符串值、数值、日期和时间比较、节点和 QName 处理、序列处理、逻辑值等等,并且XQuery和XPointer都构建于XPath基础上。

Re正则表达式通常被用来检索、替换那些符合某个模式(规则)的文本。个人认为前端基础比较扎实的,用pyquery是最方便的,beautifulsoup也不错,re速度比较快,但是写正则比较麻烦。当然了,既然用python,肯定还是自己用着方便最好。

推荐解析器资源:

pyquery https://dwz.cn/1EwUKsEGBeautifulsoup http://t.im/ddfvxpath教程 http://t.im/ddg2re文档 http://t.im/ddg6

3、数据存储

当爬回来的数据量较小时,你可以使用文档的形式来储存,支持TXT、json、csv等格式。但当数据量变大,文档的储存方式就行不通了,所以掌握一种数据库是必须的。

Mysql 作为关系型数据库的代表,拥有较为成熟的体系,成熟度很高,可以很好地去存储一些数据,但在在海量数据处理的时候效率会显著变慢,已然满足不了某些大数据的处理要求。

MongoDB已经流行了很长一段时间,相对于MySQL ,MongoDB可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

Redis是一个不折不扣的内存数据库,Redis 支持的数据结构丰富,包括hash、set、list等。数据全部存在内存,访问速度快,可以存储大量的数据,一般应用于分布式爬虫的数据存储当中。

推荐数据库资源:

mysql文档 https://dev.mysql.com/doc/mongoDB文档 https://docs.mongodb.com/redis文档 https://redis.io/documentation/工程化爬虫

掌握前面的技术你就可以实现轻量级的爬虫,一般量级的数据和代码基本没有问题。

但是在面对复杂情况的时候表现不尽人意,此时,强大的爬虫框架就非常有用了。

首先是出身名门的Apache顶级项目Nutch,它提供了我们运行自己的搜索引擎所需的全部工具。支持分布式抓取,并有Hadoop支持,可以进行多机分布抓取,存储和索引。另外很吸引人的一点在于,它提供了一种插件框架,使得其对各种网页内容的解析、各种数据的采集、查询、集群、过滤等功能能够方便的进行扩展。

其次是GitHub上众人star的scrapy,scary是一个功能非常强大的爬虫框架。它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。学会scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

最后Pyspider作为人气飙升的国内大神开发的框架,满足了绝大多数Python爬虫的需求 —— 定向抓取,结构化化解析。它能在浏览器界面上进行脚本的编写,功能的调度和爬取结果的实时查看,后端使用常用的数据库进行爬取结果的存储等。其功能强大到更像一个产品而不是一个框架。这是三个最有代表性的爬虫框架,它们都有远超别人的有点,比如Nutch天生的搜索引擎解决方案、Pyspider产品级的WebUI、Scrapy最灵活的定制化爬取。建议先从最接近爬虫本质的框架scary学起,再去接触人性化的Pyspider,为搜索引擎而生的Nutch。

推荐爬虫框架资源:

Nutch文档 http://nutch.apache.org/scary文档 https://scrapy.org/pyspider文档 http://t.im/ddgj反爬及应对措施

爬虫像一只虫子,密密麻麻地爬行到每一个角落获取数据,虫子或许无害,但总是不受欢迎的。因为爬虫技术造成的大量IP访问网站侵占带宽资源、以及用户隐私和知识产权等危害,很多互联网企业都会花大力气进行“反爬虫”。

你的爬虫会遭遇比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

常见的反爬虫措施有:

通过Headers反爬虫基于用户行为反爬虫基于动态页面的反爬虫字体反爬.....

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,控制访问频率尽量保证一次加载页面加载且数据请求最小化,每个页面访问增加时间间隔;

禁止cookie可以防止可能使用cookies识别爬虫的网站来ban掉我们;

根据浏览器正常访问的请求头对爬虫的请求头进行修改,尽可能和浏览器保持一致等等。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。

分布式爬虫

爬取基本数据已经没有问题,还能使用框架来面对一写较为复杂的数据,此时,就算遇到反爬,你也掌握了一些反反爬技巧。

你的瓶颈会集中到爬取海量数据的效率,这个时候相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理将多台主机组合起来,共同完成一个爬取任务,需要你掌握 Scrapy +Redis+MQ+Celery这些工具。

Scrapy 前面我们说过了,用于做基本的页面爬取, Redis 则用来存储要爬取的网页队列,也就是任务队列。

scarpy-redis就是用来在scrapy中实现分布式的组件,通过它可以快速实现简单分布式爬虫程序。

由于在高并发环境下,由于来不及同步处理,请求往往会发生堵塞,通过使用消息队列MQ,我们可以异步处理请求,从而缓解系统的压力。

RabbitMQ本身支持很多的协议:AMQP,XMPP, SMTP,STOMP,使的它变的非常重量级,更适合于企业级的开发。

Scrapy-rabbitmq-link是可以让你从RabbitMQ 消息队列中取到URL并且分发给Scrapy spiders的组件。Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统。支持 RabbitMQ、Redis 甚至其他数据库系统作为其消息代理中间件, 在处理异步任务、任务调度、处理定时任务、分布式调度等场景表现良好。

所以分布式爬虫只是听起来有些可怕,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

推荐分布式资源:

scrapy-redis文档 http://t.im/ddgkscrapy-rabbitmq文档 http://t.im/ddgncelery文档 http://t.im/ddgr

你看,通过这条完整的学习路径走下来,爬虫对你来说根本不是问题。

因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术。

解锁每一个部分的知识点并且有针对性的去学习,走完这一条顺畅的学习之路,你就能掌握python爬虫。

以上便是本文内容,有帮助点赞喜欢支持一下吧。。

本文转载自互联网,如有侵权,联系删除