首页 开发编程 正文

怎么打开php编辑器

php是一种创建动态交互性站点的强有力的服务器端脚本语言。Twitter和Facebook之类的网站都通过其应用程序编程接口(API)向程序员提供某些数据。重新生成数据集并每分钟下载一次并没有实际意义-这会占用大量带宽。...

怎么打开php编辑器,php是什么文件格式?

以php后缀的文件,是php脚本文件。php是一种创建动态交互性站点的强有力的服务器端脚本语言。如果要编辑或者打开的话,下载相应的编辑器即可。例如:editplus,notepad++,zendstudio等等。

魔兽世界的网页怎么做?

先从ps学起,或者严格点从手绘学起,如果魔兽的角色你想自己画出来的话,学ps的溶图以及切片。

然后学习html css,找一个文本编辑器,sublime就还不错

我没仔细看魔兽的首页,不知道有动态效果没有,你可能还要学习javascript

如果你想把这个网页投放到网上,你还要学更多,

要学习一门后台语言,php之类的,然后web服务器 appache或者nginx,然后买域名,买云服务器,把你的代码发送到云服务器运行,绑定域名。

整个学下来,需要不少时间

如果你没这个毅力的话还是放弃吧,因为做网站可能没你想的那么有意思。

Python有多好用?

在有关大数据分析Python API的本教程中,我们将学习如何从远程网站检索数据以进行数据科学项目。像baidu,Twitter和Facebook之类的网站都通过其应用程序编程接口(API)向程序员提供某些数据。要使用API,你需要向远程Web服务器发出请求,然后检索所需的数据。

但是,为什么要使用API而不是可以下载的静态数据集呢?API在以下情况下很有用:

a.数据变化很快。股票价格数据就是一个例子。重新生成数据集并每分钟下载一次并没有实际意义-这会占用大量带宽,而且速度很慢。

b.您需要一小部分更大的数据。Reddit评论就是一个例子。如果您只想在Reddit上发表自己的评论该怎么办?下载整个Reddit数据库,然后仅过滤您自己的注释并没有多大意义。

c.涉及重复计算。Spotify的API可以告诉您音乐的流派。从理论上讲,您可以创建自己的分类器,并使用它对音乐进行分类,但您将永远不会拥有Spotify所拥有的数据。

在上述情况下,API是正确的解决方案。对于本数据科学教程,我们将查询一个简单的API,以检索有关国际空间站(ISS)的数据。使用API可以节省我们自己进行所有计算的时间和精力。

大数据分析Python中的API请求

API托管在Web服务器上。当您www.google.com在浏览器的地址栏中键入内容时,您的计算机实际上是在向www.google.com服务器询问网页,然后该网页返回到您的浏览器。

API的工作方式几乎相同,除了您的程序要求数据而不是您的Web浏览器询问网页之外。这些数据通常以JSON格式返回(有关更多信息,请参阅有关使用JSON数据的教程)。

为了获取数据,我们向Web服务器发出请求。然后,服务器将回复我们的数据。在大数据分析Python中,我们将使用请求库来执行此操作。在此大数据分析Python API教程中,我们将为所有示例使用大数据分析Python 3.4。

请求类型

有许多不同类型的请求。最常用的一个GET请求用于检索数据。

我们可以使用一个简单的GET请求从OpenNotify API 检索信息。

OpenNotify具有多个API端点。端点是用于从API检索不同数据的服务器路由。例如,/commentsReddit API上的端点可能会检索有关注释的信息,而/users端点可能会检索有关用户的数据。要访问它们,您可以将端点添加到API 的基本URL中。

我们将在OpenNotify上看到的第一个端点是iss-now.json端点。该端点获取国际空间站的当前纬度和经度。如您所见,检索此数据不适用于数据集,因为它涉及服务器上的一些计算,并且变化很快。

您可以在此处查看OpenNotify上所有端点的列表。

OpenNotify API 的基本网址是http://api.open-notify.org,因此我们将其添加到所有端点的开头。

状态码

我们刚刚发出的请求的状态码为200。向Web服务器发出的每个请求都返回状态代码。状态代码指示有关请求发生的情况的信息。以下是与GET请求相关的一些代码:

a)200 -一切正常,结果已返回(如果有)

b)301—服务器正在将您重定向到其他端点。当公司切换域名或更改端点名称时,可能会发生这种情况。

c)401-服务器认为您未通过身份验证。当您没有发送正确的凭据来访问API时就会发生这种情况(我们将在以后的文章中讨论身份验证)。

d)400-服务器认为您提出了错误的请求。当您没有正确发送数据时,可能会发生这种情况。

e)403 —您尝试访问的资源被禁止—您没有正确的权限查看它。

f)404 -在服务器上找不到您尝试访问的资源。

现在http://api.open-notify.org/iss-pass,根据API文档,向不存在的端点发出GET请求。

击中正确的终点

iss-pass不是有效的端点,因此我们得到了一个404状态码作为相应。.json正如API文档所述,我们忘记在最后添加。

现在,我们将向发出GET请求http://api.open-notify.org/iss-pass.json。

查询参数

您将在上一个示例中看到,我们得到了一个400状态码,表示请求错误。如果您查看OpenNotify API的文档,我们会发现ISS Pass端点需要两个参数。

当ISS下次通过地球上的给定位置时,将返回ISS Pass端点。为了对此进行计算,我们需要将位置的坐标传递给API。为此,我们传递了两个参数-纬度和经度。

为此,我们可以在params请求中添加可选的关键字参数。在这种情况下,我们需要传递两个参数:

1)lat —我们想要的位置的纬度。

2)lon —我们想要的位置的经度。

我们可以使用这些参数制作字典,然后将它们传递给requests.get函数。

我们还可以通过将查询参数添加到url中来直接做同样的事情,如下所示:http://api.open-notify.org/iss-pass.json?lat=40.71&lon=-74。

将参数设置为字典几乎总是可取的,因为requests它可以处理一些事情,例如正确设置查询参数的格式。

我们将使用纽约市的坐标进行请求,然后查看得到的答复。

b'{n "message": "success", n "request": {n "altitude": 100, n "datetime": 1441417753, n "latitude": 40.71, n "longitude": -74.0, n "passes": 5n }, n "response": [n {n "duration": 330, n "risetime": 1441445639n }, n {n "duration": 629, n "risetime": 1441451226n }, n {n "duration": 606, n "risetime": 1441457027n }, n {n "duration": 542, n "risetime": 1441462894n }, n {n "duration": 565, n "risetime": 1441468731n }n ]n}'

b'{n "message": "success", n "request": {n "altitude": 100, n "datetime": 1441417753, n "latitude": 40.71, n "longitude": -74.0, n "passes": 5n }, n "response": [n {n "duration": 329, n "risetime": 1441445639n }, n {n "duration": 629, n "risetime": 1441451226n }, n {n "duration": 606, n "risetime": 1441457027n }, n {n "duration": 542, n "risetime": 1441462894n }, n {n "duration": 565, n "risetime": 1441468731n }n ]n}'

使用JSON数据

您可能已经注意到,响应的内容之前是a string(尽管它显示为bytes对象,但是我们可以使用轻松地将内容转换为字符串response.content.decode("utf-8"))。

字符串是我们将信息来回传递给API的方式,但是很难从字符串中获取我们想要的信息。我们如何知道如何解码返回的字符串并在大数据分析Python中使用它?我们如何altitude从字符串响应中找出ISS的含义?

幸运的是,有一种名为JavaScript Object Notation(JSON)的格式。JSON是一种将列表和字典之类的数据结构编码为字符串的方法,以确保它们易于被机器读取。JSON是将数据来回传递给API的主要格式,大多数API服务器将以JSON格式发送其响应。

json套件随附大数据分析Python强大的JSON支持。该json软件包是标准库的一部分,因此我们无需安装任何程序即可使用它。我们既可以将列表和字典转换为JSON,也可以将字符串转换为列表和字典。就我们的ISS Pass数据而言,它是一个字典,编码为JSON格式的字符串。

json库有两种主要方法:

1)dumps —接收一个大数据分析Python对象,并将其转换为字符串。

2)loads —接收JSON字符串,并将其转换为大数据分析Python对象。

从API请求获取JSON

通过使用.json()响应上的方法,您可以将响应的内容作为大数据分析Python对象获取。

{'response': [{'risetime': 1441456672, 'duration': 369}, {'risetime': 1441462284, 'duration': 626}, {'risetime': 1441468104, 'duration': 581}, {'risetime': 1441474000, 'duration': 482}, {'risetime': 1441479853, 'duration': 509}], 'message': 'success', 'request': {'latitude': 37.78, 'passes': 5, 'longitude': -122.41, 'altitude': 100, 'datetime': 1441417753}}

内容类型

服务器不仅会在生成响应时发送状态码和数据。它还发送包含有关如何生成数据以及如何对其进行解码的信息的元数据。这存储在响应头中。在大数据分析Python中,我们可以使用headers响应对象的属性来访问它。

标头将显示为字典。在标题中,content-type是目前最重要的键。它告诉我们响应的格式以及如何对其进行解码。大数据分析Python API入门教程https://www.aaa-cg.com.cn/data/2308.html对于OpenNotify API,格式为JSON,这就是为什么我们可以json更早地使用包对其进行解码的原因。

寻找太空中的人数

OpenNotify还有一个API端点astros.json。它告诉你当前有多少人在太空中。相应的格式可以在这里找到。

9

{'number': 9, 'people': [{'name': 'Gennady Padalka', 'craft': 'ISS'}, {'name': 'Mikhail Kornienko', 'craft': 'ISS'}, {'name': 'Scott Kelly', 'craft': 'ISS'}, {'name': 'Oleg Kononenko', 'craft': 'ISS'}, {'name': 'Kimiya Yui', 'craft': 'ISS'}, {'name': 'Kjell Lindgren', 'craft': 'ISS'}, {'name': 'Sergey Volkov', 'craft': 'ISS'}, {'name': 'Andreas Mogensen', 'craft': 'ISS'}, {'name': 'Aidyn Aimbetov', 'craft': 'ISS'}], 'message': 'success'}

大数据分析Python API数据科学教程:后续步骤

现在,您已经完成了大数据分析Python API教程,现在应该可以访问简单的API并发出get请求了。requests在我们的dataquest API和抓取课程中,还有其他几种类型,您可以了解更多信息以及与API身份验证一起使用。

建议的其他后续步骤是阅读请求文档,并使用Reddit API。有一个名为PRAW 的程序包,它使在大数据分析Python中使用Reddit API更加容易,但是建议requests首先使用它来了解一切的工作原理。

https://www.toutiao.com/i6832146415016215043/

win10哪些软件能打开大文件?

1. Windows编辑器

Windows编辑器就算了,基本上被 Notepad2替换掉(有时也会使用如文件编码)

2. Notepad2

我基本上是使用Notepad2来替换系统编辑器的,优点是打开速度快等等(其他优点就不说了,主要是介绍LogView的)

打开很大的文件会提示,3 00+MB的文件基本上在一分钟内也是能打开的,当然内存也是挺吓人的

3.EditPlus 3

打开速度比较快,一般超过2MB的文件都会使用 EditPlus进行操作

半分钟内可以打开 文件

4.Sublime Text 2

基本上开发PHP,JS,CSS,HTML等都会使用它,但网上很多人说它打开速度快,我这怎么打开大文件的时候就会很慢呢(难道是人品问题?所以超过2MB的我都使用 EditPlus来处理 )

在2分钟内可以打开,而且内存占用的是最大的(难道是跟我安装的插件有关)

5. LogView

一般不轻易使用, 除非是很大的文件(100MB+),可以看到几个软件的内存占比, 比Windows任务管理器占用的内存还要小

跟Sublime 比整整相关了500多倍的内存(如果你的内存是8MB+的请忽视)

在搜索时内存的变化也不是很大

软件默认使用ANSI编辑的,所以中文的文件需要更改编辑为UTF-8

使用园子里的 fwindpeak 的 EmEditor试了下, 打开速度跟内存基本上跟sb2差不多,跟LogView比没有任何优势

不管官网上却说可以轻松处理248GB的大文件,难道电脑内存需要1200GB吗?

大数据主要学习哪些内容?

前言

要从事计算机行业的工作,不管是什么工作,开发、测试、还是算法等,都是要有一门自己比较熟练的编程语言,编程语言可以是C语言、Java、C++等,只要是和你后续工作所相关的就可以(后续用到其他语言的话,你有一门语言基础了,学起来就快了)。一般初学者入门语言大多都会选择Java、C语言、C++或者Python,而且现在网上有很多好的视频,可以供初学者学习使用。关于学习视频或者资料的选择,知乎或者百度等都有很多讲解了,也可以跟师兄师姐咨询,这样可以少走很多弯路,当然,有人说,走一些弯路总是有好处的,但是我这里说的弯路不是说不犯错误,不调bug,而是指学习资料以及一些知识点的偏重点,这样可以尽量节约一部分时间,刚开始时,总会有点迷,而且当你真正投入进去学习时,会发现时间总是不够用。

我前面是做的Java后端,后续才转的大数据,所以一些Java开发所需要的东西自己也有学习过,也都是按照正常的路线走的,JavaSE阶段,然后数据库,SSM框架,接着做了一些网上找的项目,之后发现对大数据比较感兴趣,就开始找大数据相关的资料学习,看视频,看博客,敲代码,前期大概花了3-4个月吧(公众号的这些资料就是我当时看过的),也是一步步艰难走过来的,刚刚开始接触大数据相关的东西时,一度怀疑这么多东西自己能否学得完,是不是能用得到,学完又忘了,忘了又回头看,不过还好,坚持过来了,还好没有放弃,工作也还ok,找的大数据开发岗,待遇也还不错吧。

下面就说一下我自己从Java开发到大数据开发的曲折学习之路(狗头保命.jpg)。因为我现在是做大数据相关的工作了,所以Java后端涉及到的一些SSM框架等知识点我就不介绍了,毕竟后续一段时间也没有做了。自己看过的大数据学习相关的视频+资料大概是200G-300G吧,从Linux->Hadoop->。。。->Spark->项目,还有就是一些面试文档,面经等。一些视频看了两遍或者更多,跟着学,跟着敲代码,做项目,准备面试。涉及到需要学习的东西包括:JavaSE,数据结构与算法(计算机行业必备),MySQL,Redis,ES(数据库这些可以看项目,也可以自己熟练一两个),Linux,Shell(这个可以后期补),Hadoop,Zookeeper,Hive,Flume,Kafka,HBase,Scala(Spark是Scala写的,会Scala做相关的项目会更容易入手),Spark,Flink(这个是找工作时有面试官问过几次liao不liao解,所以找完工作才开始接触学习),相关项目。

编程语言阶段学习

  如果是零基础的话,建议还是从视频开始入门比较好,毕竟一上来就看教材,这样有些代码的来龙去脉可能不是很了解。如果是有一些编程语言基础的话,从视频开始也会更简单,一些for、while循环你都知道了,学起来也会快很多。  JavaSE我是选择的某马刘意的为主,因为刚刚开始学Java看过一本从《Java从入门到精通》,没什么感觉,后续又在看了某课网的Java初级视频,还是没感觉出来啥(当时就有点怀疑自己了。。。),可能有点没进入状态。  还好后续找了某马刘意老师的JavaSE视频(我是看的2015年版本,那时候19版还没出),觉得他讲的真的是很好很详细,每个知识点都会有例子,也都会带你敲代码,做测试,可能前面有C语言基础,然后也看过Java的一些语法,所以学起来还是比较顺利,后面的IO流、多线程等知识点时,也有看书看博客,或者看看其他老师的课程,讲解的可能自己比较容易接受就可以,反正都是多尝试(下面会给出视频链接),尽量懂一些,后续可以回头来复习。JavaSE相关的视频,先看一遍,后续有时间建议再看一遍,而且这些经典的视频,看两遍真的是享受。  如果有一定基础了的,JavaSE前面七八天的视频可以加速看,但是不懂的一定要停下开仔细想想,零基础的还是尽量不要加速吧,慢慢来稳些。后面的视频建议还是跟着视频来,尽量不要加速,代码尽量都敲一敲,第一遍基本上一个月到一个半月可以结束。  JavaSE可以说是很基础也很重要的东西,主要重点包括面向对象、集合(List、Map等),IO流,String/StringBuilder/StringBuffer、反射、多线程,这些最好是都要熟悉一些,面试也是重点。  JavaSE之后,如果你是要走前端或后端开发路线的话,可以跟着一些网上的视频继续学习,这里我就不多做介绍了。

===========分割线,Scala可以后续Spark阶段再接触学习=============

  Scala的学习,Scala是一门多范式 (multi-paradigm) 的编程语言,Scala支持面向对象和函数式编程,最主要的是后续Spark的内容需要用到Scala,所以前面学习了JavaSE,到Spark学习之前,再把Scala学习一波,美滋滋,而且Scala可以和Java进行无缝对接,混合使用,更是爽歪歪。后续Spark学习时基本都是用的Scala,也可能是和Java结合使用,所以Spark之前建议还是先学一波Scala,而且Scala用起来真是很舒服(wordcount一行代码搞定),适合迭代式计算,对数据处理有很大帮助,不过Scala看代码很容易看懂,但是学起来还是挺难的,比如样例类(case class)用起来真是nice,但是隐式转换学起来就相对比较难。学习Scala的建议:1. 学习scala 特有的语法,2. 搞清楚scala和java区别,3. 了解如何规范的使用scala。Scala对学习Spark是很重要的(后面Flink也是要用),虽然现在很多公司还是用Java开发比较多,而且Spark是Scala写的,如果要读源码,会Scala还是很重要的(至少要看得懂代码)。  Scala主要重点包括:隐式转换和隐式参数、模式匹配、函数式编程。这里我看的是某硅谷韩老师的Scala视频,韩老师讲的真的很不错,五星推荐,哈哈。  也许有人会觉得Python也是需要的,但是学习阶段,可能用Java还是比较多,面试也基本都是问Java相关的内容,所以Python后续工作会用到的话,再看看Python的内容吧。

大数据框架阶段学习

  大数据这方面的知识点自己可以说真的是从零开始的,刚刚开始学那会Linux基本都没用过,心里那个虚啊,而且时间也紧迫,想起来都是一把辛酸泪。  刚刚开始学的时候,看了厦门大学林子雨的《 大数据技术原理与应用》课程,可能这个课程是面对上课的,所以看了一些,感觉对自己帮助不是很大(并不是说课程不好,可能不太适合自己,如果是要了解理论知识,很透彻,但是俺时间紧迫啊),所以就继续在网上找视频,然后发现某硅谷的培训视频很多人去参加,而且知识点也很齐全,大数据相关组件都有讲课,还有一些项目比较好,所以就找了它相关的视频,当时看的是2018年的,所以视频不算旧。  来一张推荐系统架构的图,先看看

  一般来说,Flume+Kafka对数据进行采集聚合传输,一方面Spark对实时数据进行处理,传输给相应的数据处理模块(比如实时数据处理的算法模块,Spark也有提供常见的机器学习算法的程序库),另一方面采集的数据也可以放入数据库(HBase、MongoDB等)中,后续MapReduce对离线数据进行离线处理,数据处理完毕用于后续的使用,数据采集处理的流程大概就是这样。如果是推荐系统,实时推荐会给用户产生实时的推荐结果,让用户进行查阅选择,比如你在界面浏览了或者看了新的物品,然后刷新下界面,可能给你展示的东西就有一些变成跟你刚刚浏览的相关了。离线推荐的话主要是对离线数据进行处理,为物品或种类做出相似的推荐,如果后续用户搜索相应的物品时,给用户展示相应的产品。

  大数据学习路线:Linux -> Hadoop -> Zookeeper -> Hive -> Flume -> Kafka -> HBase -> Scala -> Spark -> 项目 > Flink( 如果需要学习Storm,在Spark前面学习)

一、Linux(基本操作)

  一般我们使用的都是虚拟机来进行操作,所以要安装VM( Virtual Machine),我使用的是CentOS,所以VM和CentOS都要跟着安装好,跟着视频操作,一定要动手实践,将一些Linux基本命令熟练掌握,一些VIM编辑器的命令也要会用,做相应的一些配置,使用SecureCRT来做远程登录操作(也可以使用其他的,自己顺手就行)。再强调一遍,基本操作命令尽量熟练一点,如果一下记不住,打印一些常用的,自己看看,多用多实践,慢慢就会用了。还有一些软件包的下载安装卸载等,跟着操作一遍,熟悉下,后续都会使用,Shell编程可以后续补。

二、Hadoop(重点中的重点)

  Hadoop是一个分布式系统基础框架,用于主要解决海量数据的存储和海量数据的分析计算问题,也可以说Hadoop是后续整个集群环境的基础,很多框架的使用都是会依赖于Hadoop。主要是由HDFS、MapReduce、YARN组成。这个部分安装Hadoop,Hadoop的三个主要组成部分是重点,对他们的概念要理解出来,知道他们是做什么的,搭建集群环境,伪分布式模式和完全分布式模式的搭建,重要的是完全分布式的搭建,这些部分一定要自己动手实践,自己搭建集群,仔细仔细再仔细,Hadoop的NameNode,DataNode,YARN的启动关闭命令一定要知道,以及他们的启动关闭顺序要记住,不要搞混。后续视频会有一些案例操作,跟着写代码,做测试,把基本环境都配置好,后续这个集群(完全分布式需要三台虚拟机)要一直使用。

三、Zookeeper

  Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。分布式安装ZK,对ZK有一定的了解就可以了,了解它的应用场景,以及内部原理,跟着做一些操作,基本上有一些了解即可。

四、Hive(重点)

  Hive是基于Hadoop的数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive的安装,它的数据类型,以及它的数据定义、数据操作有较好的了解,怎么操作表(创建表、删除表,创建什么类型的表,他们有什么不同),怎么操作数据(加载数据,下载数据,对不同的表进行数据操作),对数据的查询一定要进行实践操作,以及对压缩方式和存储格式要有一些了解,用到时不懂也可以去查,最好是能理解清楚。这部分有什么面试可能会问,所以视频后续的面试讲解可以看看,理解清楚。

五、Flume

  Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。对于Flume,对它的组成架构,以及对Flume Agent的内部原理要理解清楚,Source、Channel、Sink一定要知道它们的各种类型以及作用,有哪些拓扑结构是常见常用的,例如一对一,单Source、多Channel、多Sink等,它们有什么作用,要理解清楚。还有一个重点,就是对Flume的配置文件一定要了解清楚,不懂的可以上官网查看案例,对于不同的情况,它的配置文件要做相应的修改,才能对数据进行采集处理,视频中的实践案例一定要跟着做。

六、Kafka(重点)

  Kafka是一个分布式消息队列,用来缓存数据的。比如说实时计算中可以通过Flume+Kafka对数据进行采集处理之后,Spark Streaming再使用Kafka相应的Topic中的数据,用于后续的计算使用。对于Kafka,要理解Kafka的架构,什么是Kafka,为什么需要Kafka,应用场景。基本的命令行操作要掌握,比如怎么创建删除Topic,怎么通过生产者生成数据,消费者怎么消费数据等基本操作,官网也是有一些案例可以查阅的。

七、HBase(重点)

  HBase是一个分布式的、基于列存储的开源数据库。HBase适合存储PB级别的海量数据,也可以说HBase是很适合大数据的存储的,它是基于列式存储数据的,列族下面可以有非常多的列,列族在创建表的时候就必须指定。所以对HBase的数据结构要有一定的理解,特别是RowKey的设计部分(因为面试被问到过,咳咳,所以点一下),对于它的原理要了解,一些基本操作也要都会,比如创建表,对表的操作,基本的API使用等。

八、Spark(重点中的重点)

  Spark是快速、易用、通用的大数据分析引擎。一说到Spark,就有一种哪哪都是重点感觉,哈哈。  Spark的组成可以看下图

  Spark是基于内存计算的,对于数据的处理速度要比MapReduce快很多很多,而且数据挖掘这些都是要对数据做迭代式计算,MapReduce对数据的处理方式也不适合,而Spark是可以进行迭代式计算,很适合数据挖掘等场景。Spark的Spark SQL能够对结构化数据进行处理,Spark SQL的DataFrame或DataSet可以作为分布式SQL查询引擎的作用,可以直接使用Hive上的表,对数据进行处理。Spark Streaming主要用于对应用场景中的实时流数据进行处理,支持多种数据源,DStream是Spark Streaming的基础抽象,由一系列RDD组成,每个RDD中存放着一定时间段的数据,再对数据进行处理,而且是基于内存计算,速度快,所以很适合实时数据的处理。Spark MLlib提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据 导入等额外的支持功能。对Spark的核心组件、部署模式(主要是Standalone模式和YARN模式)、通讯架构、任务调度要有一定了解(面试问到了可以说一波),Spark Shuffle要好好理解,还有内存管理要知道,对Spark的内核原理一定要好好理解,不仅面试可能要用,以后工作也是有帮助的。

九、Flink(重点中的重点)

  Flink是一个框架和分布式处理引擎,用于对无界(有开始无结束)和有界(有开始有结束)数据流进行有状态计算。现在主要是阿里系公司使用的比较多,很多公司使用的还是Spark居多,而且Flink基本上都是和Spark很多功能大体上一样的,但是以后Flink和Spark孰强孰弱还有待时间的考验,不过Flink近几年越来越火了这是事实,所以如果有时间有精力的话,可以学一学Flink相关的内容也是很不错的。Spark和Flink主要都是在数据处理方面应用,在数据处理方面的话,离线数据处理:Flink暂时比不上Spark,Spark SQL优点在于可以和Hive进行无缝连接,Spark SQL可以直接使用Hive中的表;Flink暂时做不到这一步,因为官方不支持这一操作,Flink只能将数据读取成自己的表,不能直接使用Hive中的表。对于实时数据的处理:Flink和Spark可以说是平分秋色吧,而且Flink是以事件为驱动对数据进行处理,而Spark是以时间为驱动对数据进行处理,在一些应用场景中,也许Flink的效果比Spark的效果还要好些,因为Flink对数据更加的敏感。比如一秒钟如果触发了成千上万个事件,那么时间驱动型就很难对数据做细致的计算,而事件驱动型可以以事件为单位,一个个事件进行处理,相比而言延迟更低,处理效果更好。现在使用Flink的公司越来越多,有时间学习下,也算是有个准备。

项目阶段

  其实某硅谷的视频里面有很多大数据相关的项目,而且都是文档配代码的,B站上也有视频,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。  根据自己情况,选择两到三个项目重点跟着做,理解透彻一点

大数据项目实战

  某硅谷的视频里面有很多大数据相关的项目,而且都是文档配代码的,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。根据自己情况,选择两到三个项目重点跟着做,理解透彻一点。相关项目文档资料我已经放到网盘,GongZhongHao回复相应关键字获取领取方式。   相关项目、涉及技术框架及其B站链接(B站链接主要是为了有些小伙伴网盘速度限制,这样就下载文档资料即可)

书籍

  书籍部分直接云盘链接保存即可,这里我放两张Java开发和大数据开发我自己的书单(很多,路漫漫,吾将上下而求索~)  Java后端书架:

  大数据书架:

  大概就这些,看完就需要很久了,大部分我也是需要的时候看相应的部分,所以有时间可以好好看下,不然就需要哪一部分看哪一部分,有助于学习即可。

最后

  大数据开发也是需要编程基础的,并不是学会使用这些框架怎么样就可以了,所以对于编程语言,数据结构与算法,计算机网络这些基础也是要的,这些基础知识也有助于自己以后的发展,如果是应届生校招的话,面试基本上都是JavaSE和数据结构与算法等的知识点,还有大数据组件相关的知识点,以及对项目的理解,这些都是要自己面试前准备好的,多看面经,多找面试题看,面几次,心里有谱了,后续面试就好了。  不管是从事什么样的计算机相关的岗位,编程都是很重要的,数据结构与算法特别重要,还有就是leetcode等编程网站刷题,提升自己的编程思维,后续笔试面试都要要的。  要将一行行代码看做一叠叠rmb,但是一行行代码能不能转换成一叠叠rmb,自己就一定要:坚持,多敲代码;多敲代码,坚持;坚持。 

本文转载自互联网,如有侵权,联系删除