首页 开发编程 正文

php怎么输出3 2

//licstar.net/archives/328这篇博客)1.词向量是什么自然语言理解的问题要转化为机器学习的问题,这么简洁的表示方法配合上最大熵、SVM、CRF等等算法已经很好地完成了NLP领域的各种主流任务。...

php怎么输出3 2,dw怎么导出源代码?

打开dw,然后点击设置就能导出源代码

word2vec词向量加权的方法有哪些?

一、理论概述 (主要来源于http://licstar.net/archives/328这篇博客) 1.词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化。 NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词。 举个栗子, “话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...] “麦克”表示为 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ...] 每个词都是茫茫 0 海中的一个 1。 这种 One-hot Representation 如果采用稀疏方式存储,会是非常的简洁:也就是给每个词分配一个数字 ID。比如刚才的例子中,话筒记为 3,麦克记为 8(假设从 0 开始记)。如果要编程实现的话,用 Hash 表给每个词分配一个编号就可以了。这么简洁的表示方法配合上最大熵、SVM、CRF 等等算法已经很好地完成了 NLP 领域的各种主流任务。 当然这种表示方法也存在一个重要的问题就是“词汇鸿沟”现象:任意两个词之间都是孤立的。光从这两个向量中看不出两个词是否有关系,哪怕是话筒和麦克这样的同义词也不能幸免于难。 Deep Learning 中一般用到的词向量并不是刚才提到的用 One-hot Representation 表示的那种很长很长的词向量,而是用 Distributed Representation(不知道这个应该怎么翻译,因为还存在一种叫“Distributional Representation”(类似,LDA中用topic表示词语的词向量的表示方法)表示的一种低维实数向量。这种向量一般是这个样子:[0.792, −0.177, −0.107, 0.109, −0.542, ...]。维度以 50 维和 100 维比较常见。 2.词向量的来历 Distributed representation 最早是 Hinton 在 1986 年的论文《Learning distributed representations of concepts》中提出的。虽然这篇文章没有说要将词做 Distributed representation但至少这种先进的思想在那个时候就在人们的心中埋下了火种,到 2000 年之后开始逐渐被人重视。 3. 词向量的训练 要介绍词向量是怎么训练得到的,就不得不提到语言模型。到目前为止我了解到的所有训练方法都是在训练语言模型的同时,顺便得到词向量的。 这也比较容易理解,要从一段无标注的自然文本中学习出一些东西,无非就是统计出词频、词的共现、词的搭配之类的信息。而要从自然文本中统计并建立一个语言模型,无疑是要求最为精确的一个任务(也不排除以后有人创造出更好更有用的方法)。既然构建语言模型这一任务要求这么高,其中必然也需要对语言进行更精细的统计和分析,同时也会需要更好的模型,更大的数据来支撑。目前最好的词向量都来自于此,也就不难理解了。 词向量的训练最经典的有 3 个工作,C&W 2008、M&H 2008、Mikolov 2010。当然在说这些工作之前,不得不介绍一下这一系列中 Bengio 的经典之作 4. 词向量的评价 词向量的评价大体上可以分成两种方式,第一种是把词向量融入现有系统中,看对系统性能的提升;第二种是直接从语言学的角度对词向量进行分析,如相似度、语义偏移等。 4.1 提升现有系统 词向量的用法最常见的有两种: 1. 直接用于神经网络模型的输入层。如 C&W 的 SENNA 系统中,将训练好的词向量作为输入,用前馈网络和卷积网络完成了词性标注、语义角色标注等一系列任务。再如 Socher 将词向量作为输入,用递归神经网络完成了句法分析、情感分析等多项任务。 2. 作为辅助特征扩充现有模型。如 Turian 将词向量作为额外的特征加入到接近 state of the art 的方法中,进一步提高了命名实体识别和短语识别的效果。 4.2 语言学评价 还有一个有意思的分析是 Mikolov 在 2013 年刚刚发表的一项发现。他发现两个词向量之间的关系,可以直接从这两个向量的差里体现出来。向量的差就是数学上的定义,直接逐位相减。比如 C(king)−C(queen)≈C(man)−C(woman)。更强大的是,与 C(king)−C(man)+C(woman) 最接近的向量就是 C(queen)。 为了分析词向量的这个特点, Mikolov 使用类比(analogy)的方式来评测。如已知 a 之于 b 犹如 c 之于 d。现在给出 a、b、c,看 C(a)−C(b)+C(c) 最接近的词是否是 d。 在文章 Mikolov 对比了词法关系(名词单复数 good-better:rough-rougher、动词第三人称单数、形容词比较级最高级等)和语义关系(clothing-shirt:dish-bowl) 这些实验结果中最容易理解的是:语料越大,词向量就越好。其它的实验由于缺乏严格控制条件进行对比,谈不上哪个更好哪个更差。不过这里的两个语言学分析都非常有意思,尤其是向量之间存在这种线性平移的关系,可能会是词向量发展的一个突破口。 关于Deep Lerning In Nlp的一些相关论文,《Deep Learning in NLP (一)词向量和语言模型》(http://licstar.net/archives/328)这篇博客总结的非常的好。以上内容大多数都是截取原博客内容。 二、实际操作 这篇文章是最近几天看word2vec源码以及相关神经网络训练词向量论文之后的个人小小的总结,主要是针对word2vec的使用,做一下介绍。望大家使用的过程中,少走弯路。 word2vec工具中包含了对两种模型的训练,如下图。在训练每种模型的时候又分HS和NEG两种方法。(看图就可以发现,其实word2vec并不deep……) 除了google自己的word2vec工具,各位对词向量感兴趣的牛人们也相继编写了各自不同的版本。其中比较好用的是Python Gensim主题模型包中的word2vec,但通过阅读其源码python版本只实现了skip-gram模型,并且只实现了通过分层softmax方法对其训练,并没有使用negative sampling。下面列举一下目前出现的版本以及相对应的地址,供大家选择。如下表: 版本 地址 CBOW Skip-Gram C http://word2vec.googlecode.com/svn/trunk/ HS NEG HS NEG python http://radimrehurek.com/gensim/ HS Java https://github.com/ansjsun/Word2VEC_java HS HS C++ https://github.com/jdeng/word2vec 未知 未知 未知 未知 以上代码,C++版本的我没有看过。最权威的当然是C语言版本,但是阅读起来比较困难一点。Python版本有优化处理,所以速度相对来说也不慢,但只是实现了分层softmax方法对skip-gram模型进行训练。Java版本分别实现了分层softmax方法对CBOW模型和skip-gram模型进行训练。C++版本的没有阅读其代码,所以未知…… 使用之前,先贴一些论文中对两个模型和不同方法的评价图片,方便大家根据不同任务进行不同训练。 下面以c语言正式版本为例,来介绍word2vec的使用。 首先我们将google word2vec项目源码checkout 到本机,具体地址是http://word2vec.googlecode.com/svn/trunk/ 使用ssh登录实验室Linux服务器,地址192.168.1.143。将刚才checkout的文件,上传到服务器中。 进入目录,命令行输入make指令,进行编译。 这样我们就可以开始使用,word2vec工具了。 1.将文本语料进行分词,以空格,tab隔开都可以,中文分词工具可以使用张华平博士的NLPIR2013 http://ictclas.nlpir.org/ 喜欢用Python 的童鞋也可以使用结巴分词https://github.com/fxsjy/jieba。 2.将分好词的训练语料进行训练,假定我语料名称为test.txt且在word2vec目录中。输入命令: ./word2vec -train test.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1 以上命令表示的是输入文件是test.txt,输出文件是vectors.bin,不使用cbow模型,默认为Skip-Gram模型。 每个单词的向量维度是200,训练的窗口大小为5就是考虑一个词前五个和后五个词语(实际代码中还有一个随机选窗口的过程,窗口大小<=5)。不使用NEG方法,使用HS方法。-sampe指的是采样的阈值,如果一个词语在训练样本中出现的频率越大,那么就越会被采样。-binary为1指的是结果二进制存储,为0是普通存储(普通存储的时候是可以打开看到词语和对应的向量的)除了以上命令中的参数,word2vec还有几个参数对我们比较有用比如-alpha设置学习速率,默认的为0.025.–min-count设置最低频率,默认是5,如果一个词语在文档中出现的次数小于5,那么就会丢弃。-classes设置聚类个数,看了一下源码用的是k-means聚类的方法。 · 架构:skip-gram(慢、对罕见字有利)vs CBOW(快) · 训练算法:分层softmax(对罕见字有利)vs 负采样(对常见词和低纬向量有利) · 欠采样频繁词:可以提高结果的准确性和速度(适用范围1e-3到1e-5) · 文本(window)大小:skip-gram通常在10附近,CBOW通常在5附近 3.训练好模型之后,得到vectors.bin这个模型文件。vectors.bin这个文件就是文档中词语和其对应的向量,这个向量的维度是你训练时设置的参数大小。下面我们可以利用这个model做很多自然语言处理的任务了。Google代码里面提供了distance的一个应用,说白了就是读取模型文件中每一个词和其对应的向量,计算所输入query的词,与其他所有词语的cosine相似度,排序,返回结果。同理训练命令中的-classes参数,也是获取每个词对应的向量之后,对词语进行k-means聚类。对于训练出来的模型进行操作,我推荐大家使用http://blog.csdn.net/zhaoxinfan/article/details/11640573这个java版本的模型读取类,比较方便,读取模型之后大家就可以来实现各种各样有趣的东西了。下面举几个例子: a.计算两个词语相似度,如图1计算asp与net的相似度为0.6215127 图1 b.列出所有相似词语列表,如图2为“php”的结果。 图二 c.寻找对应关系:如图3: 男人-男孩 女人-? 如图4:内蒙-呼和浩特 河北-? 图3 图4 d.删选不合群的词语,可以用来做特征选择:如图5所示:

php将图片文件转换成二进制输出的方法?

本文实例讲述了php将图片文件转换成二进制输出的方法。分享给大家供大家参考。

具体实现方法如下:

header("Content-type:image/jpeg")

;$PSize=filesize('1.jpg')

;$picturedata=fread(fopen('1.jpg',"r"),$PSize)

;echo$picturedata;就这么简单4行代码,就将图片以二进制流的形式输出到客户端了,和打开一张图片没有任何区别。这里需要注意的是,发送的header要根据具体情况而定,不一定都是image/jpeg。JPG的就是image/jpeg,但PNG的就是image/png.不同类型的图片输出不同的头部。希望本文所述对大家的php程序设计有所帮助。

那么PHP可以实现JAVA全部的技术或者说JAVA可以实现PHP的全部技术吗?

php好还是java好?区别有哪些?

两个前景都很不错,PHP适合初学者做网站编程的快速开发,JAVA适合做软件开发。选择培训的时候一定要选择合适的培训机构,不能盲目选择,一个好的培训机构能够帮你快速的掌握开发技巧,节约大量的时间。在选择培训机构时,不建议选择达内,虽然名声很响亮,又是上市公司,但是,达内的教学质量真的太差了。无法想象竟然全部都是远程视频教学,直接影响到教学质量。

PHP

独特的语法混合了C、Java、Perl以及PHP自创的语法。它可以比CGI或者Perl更快速地执行动态网页。用PHP做出的动态页面与其他的编程语言相比,PHP是将程序嵌入到HTML(标准通用标记语言下的一个应用)文档中去执行,执行效率比完全生成HTML标记的CGI要高许多;PHP还可以执行编译后代码,编译可以达到加密和优化代码运行,使代码运行更快。

<?php

var_dump('hello word');

?>

这里的标题写的是谈谈PHP和JAVA的区别,其实是委婉的说法,其实别人是想听PHP好还是JAVA好!!! 从而从中找到存在感!!!

因为由于我是从多年的php开发转到java开发的。所以最,不时的有好几个同事问我,你觉得java好还是php好。我每次的回答都是,各有千秋吧,各有各的好处,这是最实际的答案。

然后临了,去想想到底都有什么差别。今天我就来仔细总结下,php与java到底有啥差别吧。

1. php即写即用的。

也就是说每次只有一改动完成,用户立马看到效果,而java则慢多了,代码改动完成后,要重新编译,然后重启jvm,中间耗费的时间可是不少啊,而且重启jvm过程可是会造成用户响应中断的哦。

2. php写东西快。

php可以说是非常敏捷的,一个需求给到,只要不考虑后期的性能和用户量问题,那是相当快速的,甚至你都可以不用框架,直接写也会非常快的,写一个增删改查功能,可能也就30-50行代码就搞定了。而java就慢多了,首先要想一下用什么框架,目前基本上就是spring了,然后就是配置各种数据库,过滤器,servlet,决定是用mybatis还是hibernate,然后考虑代码之间的传递,然后考虑事务。。。 然后不停调试,一改代码可能就是几分钟的等待时间,可想而知。

3. php的表面思路更清晰。

什么是表面思路,就是你看到的东西就是真正做出来的东西,比如echo "hello world",就是输出hello world,而java则不同,你可能是写response中,可能是写在modelattribute中,也可能就是return了该字符串,然后不知道怎么的,它就显示到页面上了。

4. php占用内存少。

php是进程式处理问题的,占用内存相当少,可以说,你在一台机器部署50个项目没有任何问题,只要访问量不上来,搞得定。而java就不行了,java每启动一个项目,本身就得耗尽许多内存,比如在一台8g内存的机器上,一般跑上2个项目就差不多了。

说了这php的好处,难道java就没有好处吗?那是不可能的。

JAVA

1. java组件多。

我个人觉得单是这一点就盖过其他所有优点了,因为组件多,意味着用的人多,群众的眼睛是雪亮的。所以,java一定是好的,它已经积淀了太多的东西,不是一门新型语言能够随便替代的。你想要做什么,好好搜索java组件,可能都有你需要的功能,特别对于当下最流行的大数据产业,java更是占据一方。而php在这种场景就有点无能为力了。

2. java线程池,连接池,异步化方便。

其实这一点和第一点也很相似,也是因为组件多,所以要使用线程池连接池都很方便,这对于高并发高性能的场景来说,是绝对必要的。因为java的运行原因就是多线程的,所以不用每次都去初始化很多基本的东西,这省去了太多的时间,也因此大家可以忍受服务器启动的缓慢过程,因为只有一次。而php则是多进程的,每次都需要重新加载所有需要的代码,也因此无法将一些常用数据保存在内存,连接池也不大好做,异步操作更是一个大短板。

3. java是真正意义上的逻辑清晰。

因为,java中,你可以从一个进入可以借助IDE工具分析到最深层次的逻辑操作,对于每个字段,都可以清晰明了,这其实是接口和完全对象的一个使用优点。而php则做不了或者说很少有人费那劲去做这种事情,php可以说是半面向对象半面向过程开发,所以,在调用过程中插入几个自定义的函数调用是很正常的,那么你再想通过简单的IDE去分析调用链就不那么容易了。比如,对于第三方提供的接口,php就很难清楚的看出接口返回了什么,除非你把它打印出来,但是打印出来也不一定对,因为有些返回值的数据不一定有体现。这对于理解代码来说,增加了一个大大的门坎。

4. 虽说java编译比较烦,但是可以为你提前发现错误。

java的编译的确比较耗时,但是如果有明显的错误,编译是不会通过的,这就给你一个重新检查代码的机会。而php则不会,不管你写得多烂,都不会给你提示什么,而许多时候,往往就因为少写了个;分号,导致你排查数小时。

5. java远程调用方便,rmi,hessian,dubbo。

不管怎么样,远程和本地调用都很方便的知道相关的信息,而且java的同语言调用不是采用纯粹的http调用,而且维护一定的连接,从而大大提高性能。而php也有远程调用,但是相对来说就弱许多了。

总结

php和java哪个更好,其实没有问题是没有绝对的好坏的,存在即合理。只是应用场景不一样罢了。

php前端数据怎么保存到excel?

可以选择导出数据,然后保存到excel。

本文转载自互联网,如有侵权,联系删除