本篇文章给大家谈谈黄铜锻压变形量,以及黄铜锻压变形量怎么计算对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录:
黄铜的屈服极限与抗拉强度是多少?
一般是在200-300Mpa间,不同的牌号, 抗拉强度会不同的,屈服强度也不同。
直径4-6MM的铜丝,抗拉强度365MPA。
屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。
扩展资料:
铸造黄铜 屈服强度为120MPa 抗拉强度为330MPa 伸长率35% 。
加工黄铜--棒材:160MPa;370MPa;49%。
加工黄铜—管材(软);110MPa;360MPa;49% 。
加工黄铜—管材(硬);480MPa;680MPa;3%。
黄铜h62拉制棒材(半硬状态)的抗拉强度为:
370MPa(直径为5-40mm);伸长率δ10=15% δ5=18%。
335MPa(直径为40~80mm);伸长率δ10=20% δ5=24%。
参考资料来源:百度百科——黄铜(黄铜是由铜和锌所组成的合金)
金属铜在多少高温下会发生材质变化?
铜及铜合金在挤压温度
下应
具备低的
变形抗力
和良好的塑性。合理的挤压温度范围,应该根据金属与合金的
塑性图
、
再结晶图
、
相图
为依据,并考虑实际生产情况确定。
(1)加热温度一般是合金熔点
绝对温度
的0.75---0.90倍,可以根据金属与合金的熔点和该成分合金在相图上固相点温度,确定挤压温度范围的上限,一般挤压温度的上限比该合金的熔点低100℃以上。当加热温度接近熔点时,
金属锭
坯容易出现过热
过烧
,过热使金属的晶粒过分长大,造成挤压后的制品
晶粒粗大
,
金属强度
偏低。过烧使
金属晶粒
之间的
低熔点
物质开始熔化,晶粒之间失去了联系。所以应该避免挤压时的
热脆性
(过热、过烧现象)。
挤压温度范围的下限,应该考虑高温的良好塑性,还应该使金属与合金的变形抗力不太高。一般挤压温度的下限要比金属的
再结晶温度
高loot以上,使挤压终了温度在金属的再结晶温度以上。
(2)金属与合金在高温时存在相变的合金,最好选择金属与合金在单相区进行
热挤压
。挤压时超出规定的温度范围,合金可能出现新的组织,这种新组织可能具有热脆性,也可能粘性大,造成金属不均匀流动,给挤压操作带来困难。
(3)挤压金属应尽量考虑在
高温塑性
区范围内的温度条件下进行热挤压,以免产生制品的横向裂纹。但同时还应该考虑金属与合金在高温下的表面性质,防止锭坯表面过度氧化或粘结。因此,考虑挤压温度时,还需要考虑
挤压机
能力。在采用较低的挤压温度时,应该使用大吨位挤压机。
(4)考虑挤压变形
热效应
。挤压的一次变形量很大,变形速度快,另外挤压时摩擦产生的热量等,可以引起挤压过程
中锭
坯温度的升高,挤压变形热效应很大,金属在
塑性变形
时90%一95%的
变形能
转化为热量。因此在制定加热温度时,尽量采用温度下限挤压。
(5)考虑金属与合金的
工艺性能
和力学性能。在不同的温度下进行挤压,可以获得不同挤压制品的力学性能,在选择挤压温度时,应考虑挤压制品的力学性能
符合标准
要求。某些金属与合金在高温下易氧化,某些合金对挤压工具的粘性随温度的升高而增大。如
紫铜
、
白铜
、
铝青铜
等,应该考虑尽量采用较低的温度挤压。某些合金在较高的温度下挤压时缩尾太长,压余增加,如HPb59-1等。挤压黄铜时温度太低,制品尾端容易形成条状组织。
在确定挤压温度时,除考虑上述因素外,还应该考虑挤压制品的形状、
变形程度
、挤压工具温度、润滑条件等,对挤压温度都有一定的影响。
为掌握金属与合金的高温塑性,已通过实验测出了各种金属与合金在不同温度下的变形抗力与塑性之间的关系,并绘制成了塑性曲线。挤压温度就选择在塑性好、变形抗力适中的范围内。
黄铜的屈服极限是多少?
普通黄铜 (变形度为50%,未在600度退火时) :
H59 200
H62 500
H68 520
H96 390
黄铜性能特性,要详细的。
黄铜是由铜和锌所组成的合金。如果只是由铜、锌组成的黄铜就叫作普通黄铜。黄铜常被用于制造阀门、水管、空调内外机连接管和散热器等。更好的了解黄铜特性,对于黄铜的使用和黄铜产业的发展具有重要的意义。
普通黄铜特性的力学性能:黄铜中由于含锌量不同,机械性能也不一样,图7是黄铜的机械性能随含锌量不同而变化的曲线。对于α黄铜,随着含锌量的增多,σb和δ均不断增高。对于(α+β)黄铜,当含锌量增加到约为45%之前,室温强度不断提高。若再进一步增加含锌量,则由于合金组织中出现了脆性更大的r相(以Cu5Zn8化合物为基的固溶体),强度急剧降低。(α+β)黄铜的室温塑性则始终随含锌量的增加而降低。
特殊黄铜的性能:特殊黄铜中的α相及β相是多元复杂固溶体,其强化效果较大,而普通黄铜中的α及β相是简单的Cu-Zn固溶体,其强化效果较低。虽然锌当量相当,多元固溶体与简单二元固溶体的性质是不一样的。所以,少量多元强化是提高合金性能的一种途径。
铅黄铜特性:铅实际不溶于黄铜内,呈游离质点状态分布在晶界上。铅黄铜按其组织有α和(α+β)两种。α铅黄铜由于铅的有害作用较大,高温塑性很低,故只能进行冷变形或热挤压。(α+β)铅黄铜在高温下具有较好的塑性,可进行锻造。 锡黄铜:黄铜中加入锡,可明显提高合金的耐热性,特别是提高抗海水腐蚀的能力,故锡黄铜有“海军黄铜”之称。
锰黄铜特性:锰在固态黄铜中有较大的溶解度。黄铜中加入1%~4%的锰,可显著提高合金的强度和耐蚀性,而不降低其塑性。
铁黄铜特性:铁黄铜中,铁以富铁相的微粒析出,作为晶核而细化晶粒,并能阻止再结晶晶粒长大,从而提高合金的机械性能和工艺性能。铁黄铜中的铁含量通常在1.5%以下,其组织为(α+β),具有高的强度和韧性,高温下塑性很好,冷态下也可变形。常用的牌号为Hfe59-1-1。
镍黄铜特性:镍与铜能形成连续固溶体,显著扩大α相区。黄铜中加入镍可显著提高黄铜在大气和海水中的耐蚀性。镍还能提高黄铜的再结晶温度,促使形成更细的晶粒。 HNi65-5镍黄铜具有单相的α组织,室温下具有很好的塑性,也可在热态下变形.
黄铜材料对照表 Brass specification
CuZn29Sn1黄铜化学成分力学性能
牌号:CuZn29Sn1
CuZn29Sn1化学成分:
品牌:绿兴金属
Cu:70-73
Zn:余量
Pb:0.07
Fe:0.06
As:0.02-0.06
Sn:0.9-1.2
CuZn29Sn1力学性能用途:
黄铜 黄铜是由铜和锌所组成的合金。如果只是由铜、锌组成的黄铜就叫作普通黄铜。如果是由二种以上的元素组成的多种合金就称为特殊黄铜。如由铅、锡、锰、镍、铁、硅组成的铜合金。黄铜有较强的耐磨性能。特殊黄铜又叫特种黄铜,它强度高、硬度大、耐化学腐蚀性强。还有切削加工的机械性能也较 黄铜材料突出。由黄铜所拉成的无缝铜管,质软、耐磨性能强。黄铜无缝管可用于热交换器和冷凝器、低温管路、海底运输管。相关性能和了解更多加工性能可以百度绿兴金属找到我们。制造板料、条材、棒材、管材,铸造零件等。含铜在62%~68%,塑性强,制造耐压设备等。
根据黄铜中所含合金元素种类的不同,黄铜分为普通黄铜和特殊黄铜两种。压力加工用的黄铜称为变形黄铜。
1.普通黄铜
(1)普通黄铜的室温组织 普通黄铜是铜锌二元合金,其含锌量变化范围较大,因此其室温组织也有很大不同。根据Cu-Zn二元状态图(图6),黄铜的室温组织有三种:含锌量在35%以下的黄铜,室温下的显微组织由单相的α固溶体组成,称为α黄铜;含锌量在36%~46%范围内的黄铜,室温下的显微组织由(α+β)两相组成,称为(α+β)黄铜(两相黄铜);含锌量超过46%~50%的黄铜,室温下的显微组织仅由β相组成,称为β黄铜。
(2)压力加工性能
α单相黄铜(从H96至H65)具有良好的塑性,能承受冷热加工,但α单相黄铜在锻造等热加工时易出现中温脆性,其具体温度范围随含Zn量不同而有所变化,一般在200~700℃之间。因此,热加工时温度应高于700℃。单相α黄铜中温脆性区产生的原因主要是在Cu-Zn合金系α相区内存在着Cu3Zn和Cu9Zn两个有序化合物,在中低温加热时发生有序转变,使合金变脆;另外,合金中存在微量的铅、铋有害杂质与铜形成低熔点共晶薄膜分布在晶界上,热加工时产生晶间破裂。实践表明,加入微量的铈可以有效地消除中温脆性。
两相黄铜(从H63至H59),合金组织中除了具有塑性良好的α相外,还出现了由电子化合物CuZn为基的β固溶体。β相在高温下具有很高的塑性,而低温下的β′相(有序固溶体)性质硬脆。故(α+β)黄铜应在热态下进行锻造。含锌量大于46%~50%的β黄铜因性能硬脆,不能进行压力加工。
(3)力学性能 黄铜中由于含锌量不同,机械性能也不一样,图7是黄铜的机械性能随含锌量不同而变化的曲线。对于α黄铜,随着含锌量的增多,σb和δ均不断增高。对于(α+β)黄铜,当含锌量增加到约为45%之前,室温强度不断提高。若再进一步增加含锌量,则由于合金组织中出现了脆性更大的r相(以Cu5Zn8化合物为基的固溶体),强度急剧降低。(α+β)黄铜的室温塑性则始终随含锌量的增加而降低。所以含锌量超过45%的铜锌合金无实用价值。
普通黄铜的用途极为广泛,如水箱带、供排水管、奖章、波纹管、蛇形管、冷凝管、弹壳及各种形状复杂的冲制品、小五金件等。随着锌含量的增加从H63到H59,它们均能很好地承受热态加工,多用于机械及电器的各种零件、冲压件及乐器等处。
2.特殊黄铜
为了提高黄铜的耐蚀性、强度、硬度和切削性等,在铜-锌合金中加入少量(一般为1%~2%,少数达3%~4%,极个别的达5%~6%)锡、铝、锰、铁、硅、镍、铅等元素,构成三元、四元、甚至五元合金,即为复杂黄铜,亦称特殊黄铜。
(1)锌当量系数 复杂黄铜的组织,可根据黄铜中加入元素的“锌当量系数”来推算。因为在铜锌合金中加入少量其他合金元素,通常只是使Cu-Zn状态图中的α/(α+β)相区向左或向右移动。所以特殊黄铜的组织,通常相当于普通黄铜中增加或减少了锌含量的组织。例如,在Cu-Zn合金中加入1%硅后的组织,即相当于在Cu-Zn合金中增加10%锌的合金组织。所以硅的“锌当量”为10。硅的“锌当量系数”最大,使Cu-Zn系中的α/(α+β)相界显著移向铜侧,即强烈缩小α相区。镍的“锌当量系数”为负值,即扩大α相区。
(2)特殊黄铜的性能 特殊黄铜中的α相及β相是多元复杂固溶体,其强化效果较大,而普通黄铜中的α及β相是简单的Cu-Zn固溶体,其强化效果较低。虽然锌当量相当,多元固溶体与简单二元固溶体的性质是不一样的。所以,少量多元强化是提高合金性能的一种途径。
(3)几种常用的特殊变形黄铜的组织和压力加工性能
铅黄铜:铅实际不溶于黄铜内,呈游离质点状态分布在晶界上。铅黄铜按其组织有α和(α+β)两种。α铅黄铜由于铅的有害作用较大,高温塑性很低,故只能进行冷变形或热挤压。(α+β)铅黄铜在高温下具有较好的塑性,可进行锻造。
锡黄铜:黄铜中加入锡,可明显提高合金的耐热性,特别是提高抗海水腐蚀的能力,故锡黄铜有“海军黄铜”之称。
锡能溶入铜基固溶体中,起固溶强化作用。但是随着含锡量的增加,合金中会出现脆性的r相(CuZnSn化合物),不利于合金的塑性变形,故锡黄铜的含锡量一般在0.5%~1.5%范围内。
常用的锡黄铜有HSn70-1,HSn62-1,HSn60-1等。前者是α合金,具有较高的塑性,可进行冷、热压力加工。后两种牌号的合金具有(α+β)两相组织,并常出现少量的r相,室温塑性不高,只能在热态下变形。
锰黄铜:锰在固态黄铜中有较大的溶解度。黄铜中加入1%~4%的锰,可显著提高合金的强度和耐蚀性,而不降低其塑性。
锰黄铜具有(α+β)组织,常用的有HMn58-2,冷、热态下的压力加工性能相当好。
铁黄铜:铁黄铜中,铁以富铁相的微粒析出,作为晶核而细化晶粒,并能阻止再结晶晶粒长大,从而提高合金的机械性能和工艺性能。铁黄铜中的铁含量通常在1.5%以下,其组织为(α+β),具有高的强度和韧性,高温下塑性很好,冷态下也可变形。常用的牌号为Hfe59-1-1。
镍黄铜:镍与铜能形成连续固溶体,显著扩大α相区。黄铜中加入镍可显著提高黄铜在大气和海水中的耐蚀性。镍还能提高黄铜的再结晶温度,促使形成更细的晶粒。
HNi65-5镍黄铜具有单相的α组织,室温下具有很好的塑性,也可在热态下变形,但是对杂质铅的含量必须严格控制,否制会严重恶化合金的热加工性能。
CuZn29Sn1黄铜化学成分力学性能文稿提供者:绿兴金属有限公司
黄铜锻压变形量的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于黄铜锻压变形量怎么计算、黄铜锻压变形量的信息别忘了在本站进行查找喔。