塑性变形对金属组织和性能有那些影响?谢谢了?
塑性变形对组织和结构的影响:
一、形成纤维结构:晶粒在变形方向上拉长或扁平;杂质呈薄带状或链状分布。
二、形成变形纹理:
1、变形织构:由塑性变形引起的每一晶粒择优取向的多晶材料的结构。
2、线(丝)织构:晶向倾向于与变形方向平行(如拉丝时形成)。
3、平面(板)织构:晶面倾向于与轧制面平行,晶向倾向于与主变形方向平行。
4、形成位错细胞(亚结构)。
黄铜是属于金属类吗?
黄铜不属于金属类,而属于合金类。
黄铜是由铜和锌所组成的合金,由铜、锌组成的黄铜就叫作普通黄铜,如果是由二种以上的元素组成的多种合金就称为特殊黄铜。黄铜有较强的耐磨性能,黄铜常被用于制造阀门、水管、空调内外机连接管和散热件等。
黄铜有较强的耐磨性能。特殊黄铜又叫特种黄铜,它强度高、硬度大、耐化学腐蚀性强。还有切削加工的机械性能也较 突出。由黄铜所拉成的无缝铜管,质软、耐磨性能强。黄铜无缝管可用于热交换器和冷凝器、低温管路、海底运输管。制造板料、条材、棒材、管材,铸造零件等。含铜在62%~68%,塑性强,制造耐压设备等。 根据黄铜中所含合金元素种类的不同,黄铜分为普通黄铜和特殊黄铜两种。压力加工用的黄铜称为变形黄铜。
为什么变形度越大再结晶晶粒越细?
1、冷却速度越快,材料的过冷度也会相应的增加,可以通俗的理解为随着冷却速度的增加,材料的结晶形核过程会有相应的时间滞后性,就会造成过冷度增加。
2、随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。
3、过冷度增大,δf大,结晶驱动力大,形核率和长大速度都大,且n的增加比g增加得快,提高了n与g的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。
关于形变的特性
弹性形变本质是固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状谓之“弹性形变”。弹性变形分为线弹性、非线弹性和滞弹性三种。线弹性变形服从虎克定律,且应变随应力瞬时单值变化。非线弹性变形不服从虎克定律,但仍具有瞬时单值性。
形变的影响
1、金属在室温下的塑性变形,对金属的组织和性能影响很大,常会出现加工硬化、内应力和各向异性等现象。
2、经过冷变形的金属,如加热到一定温度并保持一定的时间,原子的激活能增加到足够的活动力时,便会出现新的晶核,并成长为新的晶粒,这种现象称为再结晶。经过再结晶处理后,冷变形引起的晶粒畸变以及由此引起的加工硬化、残余应力等都会完全消除。
铝受热变形原因?
1,晶内滑移。在通常条件下,热变形的主要机理是品内滑移。这是由于高温时原子间距增大,原子的热振动及扩散速度增加,位错的滑移、攀移、交滑移及位错结点脱锚比低温时来得容易,滑移系增多,滑移的灵活性提高,改善了各晶粒之间变形的协调性,晶界对位错运动的阻碍作用减弱。
2,晶界滑移。热塑性变形时,由于晶界强度低于晶内,使得晶界滑动容易进行,又由于热增加扩散作用,及时消除晶界滑动所引起的破坏。因此,与冷变形相比,晶界滑动的变形量要大。三向压应力的作用会通过塑性粘焊效应及时修复高温晶界滑移所产生裂纹,产生较大的晶间变形。尽管如此,在常规的热变形条件下,晶界滑动相对于晶内滑移变形量还是小的。只有在微细晶粒的超塑性变形条件下,晶界滑动机理才起主要作用,并且晶界滑动是在扩散蠕变调节下进行的。
3,扩散性蠕变。扩散性蠕变是在应力场作用下,由空位的定向移动所引起的。在应力场作用下,受拉应力晶界的空位浓度高于其他部位的晶界。由于各部位空位的化学势能差,引起空位的定向移动,即空位从垂直于拉应力的晶界放出,而被平行于拉应力的晶界所吸收。按扩散途径的不同,可分为晶内扩散和晶界扩散。晶内扩散引起晶粒在拉应力方向上的伸长变形,或在受压方向上的缩短变形;而晶界扩散引起品粒的“转动”。
黄铜含铁吗?
黄铜是不含铁的。 1、普通黄铜 它是由铜和锌组成的合金。 当含锌量小于 35% 时,锌能溶于铜内形成单相 a ,称单相黄铜 ,塑性好,适于冷热加压加工。 当含锌量为36%~46%时,有 a 单相还有以铜锌为基的β固溶体,称双相黄铜, β相使黄铜塑性减小而抗拉强度上升,只适于热压力加工。 若继续增加锌的质量分数 ,则抗拉强度下降,无使用价值。 代号用“ H +数字”表示, H 表示黄铜,数字表示铜的质量分数。 如 H68 表示含铜量为 68% ,含锌量为 32% 的黄铜,铸造黄铜则在代号前加“ Z ”字,如 ZH62。 如 Zcuzn38 表示含锌量为 38% ,余量为铜的铸造黄铜。 H90 、H80属于单相黄铜,金黄色,故有金色共称之,称为镀层,装饰品,奖章等。 H68、 H59 属于双相黄铜,广泛用于电器上的结构件,如螺栓,螺母,垫圈、弹簧等。 一般情况下,冷变形加工用单相黄铜 热变形加工用双相黄铜。 2、特殊黄铜 在普通黄铜中加入其它合金元素所组成的多元合金称为黄铜。常加入的元素有铅、锡、 铝等,相应地可称为铅黄铜 、锡黄铜、铝黄铜。加合金元素的目的。主要是提高抗拉强度改善工艺性。 代号:为“ H +主加元素符号(除锌外)+铜的质量分数+主加元素质量分数+其它元素质量分数”表示。 如: HPb59-1 表示铜的质量分数为 59% ,含主加元素铅的质量分数为 1% ,余量为锌的铅黄铜。
金属冷变形后产生的加工硬化现象,在生产中有何利弊?
①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。
因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提高,而塑性和韧性下降产生所谓“加工硬化”现象。
②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。
另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。
加工硬化也是某些压力加工工艺能够实现的重要因素。
如冷拉钢丝拉过模孔的部分,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形。
黄铜密度多少?
黄铜密度8.50-8.80*10^3kg/m^3。
黄铜是由铜和锌所组成的合金,由铜、锌组成的黄铜就叫做普通黄铜。如果是由二种以上的元素组成的多种合金就称为特殊黄铜。黄铜有较强的耐磨性能,黄铜常被用于制造阀门、水管、空调内外机连接管和散热器等。
根据黄铜中所含合金元素种类的不同,黄铜分为普通黄铜和特殊黄铜两种。压力加工用的黄铜称为变形黄铜。
普通黄铜的室温组织普通黄铜是铜锌二元合金,其含锌量变化范围较大,因此其室温组织也有很大不同。
黄铜的室温组织有三种:含锌量在35%以下的黄铜,室温下的显微组织由单相的α固溶体组成,称为α黄铜。
含锌量在36%~46%范围内的黄铜,室温下的显微组织由(α+β)两相组成,称为(α+β)黄铜(两相黄铜);含锌量超过46%~50%的黄铜,室温下的显微组织仅由β相组成,称为β黄铜。
预变形度是什么?
预变形度达到2%~10%时,再结晶后其晶粒会出现异常的大晶粒,称这个变形度为临界变形度。不同的金属具体的临界变形度数值有所不同。
预变形度很小(<2%)或未变形的金属不发生再结晶。晶粒大小保持原样不变。这是因为晶格畸变能很小,再结晶驱动力不够,不能引发再结晶。
晶粒大小对金属性能有何影响?晶粒大小对金属?
金属结晶后的晶粒大小可用单位体积内的晶粒数目来表示。单位体积内的晶粒数目越多,说明晶粒越细小。实验证明,在常温下细晶粒金属的力学性能比粗晶粒金属高。这主要是由于晶粒越细小,晶界的数量越多,位错移动时的阻力增大,使金属的塑性变形抗力增加。
同时,晶粒数量越多,金属的塑性变形可以分散到更多的晶粒内进行,晶界也会阻止裂纹的扩展,使金属的力学性能提高。
金属材料的物理性能有时对加工工艺也有一定的影响。例如,高速钢的导热性较差,锻造时应采用低的速度来加热升温,否则容易产生裂纹;而材料的导热性对切削刀具的温升有重大影响。又如,锡基轴承合金、铸铁和铸钢的熔点不同,故所选的熔炼设备、铸型材料等均有很大的不同。